pub struct MixedRadixEvaluationDomain<F: FftField> {
    pub size: u64,
    pub log_size_of_group: u32,
    pub size_as_field_element: F,
    pub size_inv: F,
    pub group_gen: F,
    pub group_gen_inv: F,
    pub offset: F,
    pub offset_inv: F,
    pub offset_pow_size: F,
}Expand description
Defines a domain over which finite field (I)FFTs can be performed. Works only for fields that have a multiplicative subgroup of size that is a power-of-2 and another small subgroup over a different base defined.
Fields§
§size: u64The size of the domain.
log_size_of_group: u32log_2(self.size).
size_as_field_element: FSize of the domain as a field element.
size_inv: FInverse of the size in the field.
group_gen: FA generator of the subgroup.
group_gen_inv: FInverse of the generator of the subgroup.
offset: FOffset that specifies the coset.
offset_inv: FInverse of the offset that specifies the coset.
offset_pow_size: FConstant coefficient for the vanishing polynomial.
Equals self.offset^self.size.
Trait Implementations§
Source§impl<F: FftField> CanonicalDeserialize for MixedRadixEvaluationDomain<F>
 
impl<F: FftField> CanonicalDeserialize for MixedRadixEvaluationDomain<F>
Source§fn deserialize_with_mode<R: Read>(
    reader: R,
    compress: Compress,
    validate: Validate,
) -> Result<Self, SerializationError>
 
fn deserialize_with_mode<R: Read>( reader: R, compress: Compress, validate: Validate, ) -> Result<Self, SerializationError>
The general deserialize method that takes in customization flags.
fn deserialize_compressed<R>(reader: R) -> Result<Self, SerializationError>where
    R: Read,
fn deserialize_compressed_unchecked<R>(
    reader: R,
) -> Result<Self, SerializationError>where
    R: Read,
fn deserialize_uncompressed<R>(reader: R) -> Result<Self, SerializationError>where
    R: Read,
fn deserialize_uncompressed_unchecked<R>(
    reader: R,
) -> Result<Self, SerializationError>where
    R: Read,
Source§impl<F: FftField> CanonicalSerialize for MixedRadixEvaluationDomain<F>
 
impl<F: FftField> CanonicalSerialize for MixedRadixEvaluationDomain<F>
Source§fn serialize_with_mode<W: Write>(
    &self,
    writer: W,
    compress: Compress,
) -> Result<(), SerializationError>
 
fn serialize_with_mode<W: Write>( &self, writer: W, compress: Compress, ) -> Result<(), SerializationError>
The general serialize method that takes in customization flags.
fn serialized_size(&self, compress: Compress) -> usize
fn serialize_compressed<W>(&self, writer: W) -> Result<(), SerializationError>where
    W: Write,
fn compressed_size(&self) -> usize
fn serialize_uncompressed<W>(&self, writer: W) -> Result<(), SerializationError>where
    W: Write,
fn uncompressed_size(&self) -> usize
Source§impl<F: Clone + FftField> Clone for MixedRadixEvaluationDomain<F>
 
impl<F: Clone + FftField> Clone for MixedRadixEvaluationDomain<F>
Source§fn clone(&self) -> MixedRadixEvaluationDomain<F>
 
fn clone(&self) -> MixedRadixEvaluationDomain<F>
Returns a copy of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
 
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from 
source. Read moreSource§impl<F: FftField> Debug for MixedRadixEvaluationDomain<F>
 
impl<F: FftField> Debug for MixedRadixEvaluationDomain<F>
Source§impl<F: FftField> EvaluationDomain<F> for MixedRadixEvaluationDomain<F>
 
impl<F: FftField> EvaluationDomain<F> for MixedRadixEvaluationDomain<F>
Source§fn new(num_coeffs: usize) -> Option<Self>
 
fn new(num_coeffs: usize) -> Option<Self>
Construct a domain that is large enough for evaluations of a polynomial
having num_coeffs coefficients.
Source§fn get_coset(&self, offset: F) -> Option<Self>
 
fn get_coset(&self, offset: F) -> Option<Self>
Construct a coset domain from a subgroup domain
Source§fn compute_size_of_domain(num_coeffs: usize) -> Option<usize>
 
fn compute_size_of_domain(num_coeffs: usize) -> Option<usize>
Return the size of a domain that is large enough for evaluations of a
polynomial having 
num_coeffs coefficients.Source§fn log_size_of_group(&self) -> u64
 
fn log_size_of_group(&self) -> u64
Return log_2(size) of 
self.Source§fn group_gen(&self) -> F
 
fn group_gen(&self) -> F
Return the generator for the multiplicative subgroup that defines this domain.
Source§fn group_gen_inv(&self) -> F
 
fn group_gen_inv(&self) -> F
Return the group inverse of 
self.group_gen().Source§fn coset_offset(&self) -> F
 
fn coset_offset(&self) -> F
Return the group offset that defines this domain.
Source§fn coset_offset_inv(&self) -> F
 
fn coset_offset_inv(&self) -> F
Return the inverse of 
self.offset().Source§fn coset_offset_pow_size(&self) -> F
 
fn coset_offset_pow_size(&self) -> F
Return 
offset^size.Source§fn fft_in_place<T: DomainCoeff<F>>(&self, coeffs: &mut Vec<T>)
 
fn fft_in_place<T: DomainCoeff<F>>(&self, coeffs: &mut Vec<T>)
Compute a FFT, modifying the vector in place.
Source§fn ifft_in_place<T: DomainCoeff<F>>(&self, evals: &mut Vec<T>)
 
fn ifft_in_place<T: DomainCoeff<F>>(&self, evals: &mut Vec<T>)
Compute a IFFT, modifying the vector in place.
Source§fn sample_element_outside_domain<R: Rng>(&self, rng: &mut R) -> F
 
fn sample_element_outside_domain<R: Rng>(&self, rng: &mut R) -> F
Sample an element that is not in the domain.
Source§fn new_coset(num_coeffs: usize, offset: F) -> Option<Self>
 
fn new_coset(num_coeffs: usize, offset: F) -> Option<Self>
Construct a coset domain that is large enough for evaluations of a polynomial
having 
num_coeffs coefficients.Source§fn size_as_field_element(&self) -> F
 
fn size_as_field_element(&self) -> F
Return the size of 
self as a field element.Source§fn distribute_powers<T: DomainCoeff<F>>(coeffs: &mut [T], g: F)
 
fn distribute_powers<T: DomainCoeff<F>>(coeffs: &mut [T], g: F)
Multiply the 
i-th element of coeffs with g^i.Source§fn distribute_powers_and_mul_by_const<T: DomainCoeff<F>>(
    coeffs: &mut [T],
    g: F,
    c: F,
)
 
fn distribute_powers_and_mul_by_const<T: DomainCoeff<F>>( coeffs: &mut [T], g: F, c: F, )
Multiply the 
i-th element of coeffs with c*g^i.Source§fn evaluate_all_lagrange_coefficients(&self, tau: F) -> Vec<F>
 
fn evaluate_all_lagrange_coefficients(&self, tau: F) -> Vec<F>
Evaluate all the lagrange polynomials defined by this domain at the
point 
tau. This is computed in time O(|domain|).
Then given the evaluations of a degree d polynomial P over this domain,
where d < |domain|, P(tau) can be computed as
P(tau) = sum_{i in [|Domain|]} L_{i, Domain}(tau) * P(g^i).
L_{i, Domain} is the value of the i-th lagrange coefficient
in the returned vector.Source§fn vanishing_polynomial(&self) -> SparsePolynomial<F>
 
fn vanishing_polynomial(&self) -> SparsePolynomial<F>
Return the sparse vanishing polynomial.
Source§fn evaluate_vanishing_polynomial(&self, tau: F) -> F
 
fn evaluate_vanishing_polynomial(&self, tau: F) -> F
This evaluates the vanishing polynomial for this domain at tau.
Source§fn filter_polynomial(&self, subdomain: &Self) -> DensePolynomial<F>
 
fn filter_polynomial(&self, subdomain: &Self) -> DensePolynomial<F>
Return the filter polynomial of 
self with respect to the subdomain subdomain.
Assumes that subdomain is contained within self. Read moreSource§fn evaluate_filter_polynomial(&self, subdomain: &Self, tau: F) -> F
 
fn evaluate_filter_polynomial(&self, subdomain: &Self, tau: F) -> F
This evaluates at 
tau the filter polynomial for self with respect
to the subdomain subdomain.Source§fn reindex_by_subdomain(&self, other: Self, index: usize) -> usize
 
fn reindex_by_subdomain(&self, other: Self, index: usize) -> usize
Given an index which assumes the first elements of this domain are the
elements of another (sub)domain,
this returns the actual index into this domain.
Source§impl<F: PartialEq + FftField> PartialEq for MixedRadixEvaluationDomain<F>
 
impl<F: PartialEq + FftField> PartialEq for MixedRadixEvaluationDomain<F>
Source§fn eq(&self, other: &MixedRadixEvaluationDomain<F>) -> bool
 
fn eq(&self, other: &MixedRadixEvaluationDomain<F>) -> bool
Tests for 
self and other values to be equal, and is used by ==.Source§impl<F: FftField> Valid for MixedRadixEvaluationDomain<F>
 
impl<F: FftField> Valid for MixedRadixEvaluationDomain<F>
fn check(&self) -> Result<(), SerializationError>
fn batch_check<'a>(
    batch: impl Iterator<Item = &'a Self> + Send,
) -> Result<(), SerializationError>where
    Self: 'a,
impl<F: Copy + FftField> Copy for MixedRadixEvaluationDomain<F>
impl<F: Eq + FftField> Eq for MixedRadixEvaluationDomain<F>
impl<F: FftField> StructuralPartialEq for MixedRadixEvaluationDomain<F>
Auto Trait Implementations§
impl<F> Freeze for MixedRadixEvaluationDomain<F>where
    F: Freeze,
impl<F> RefUnwindSafe for MixedRadixEvaluationDomain<F>where
    F: RefUnwindSafe,
impl<F> Send for MixedRadixEvaluationDomain<F>
impl<F> Sync for MixedRadixEvaluationDomain<F>
impl<F> Unpin for MixedRadixEvaluationDomain<F>where
    F: Unpin,
impl<F> UnwindSafe for MixedRadixEvaluationDomain<F>where
    F: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
 
impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
 
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more