ark_poly/domain/
mod.rs

1//! This module contains an `EvaluationDomain` abstraction for
2//! performing various kinds of polynomial arithmetic on top of
3//! fields that are friendly to fast-fourier-transforms (FFTs).
4//!
5//! A field is FFT-friendly if it contains enough
6//! roots of unity to perform the FFT in O(n log n) time.
7//! These roots of unity comprise the domain over which
8//! polynomial arithmetic is performed.
9
10use ark_ff::FftField;
11use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
12use ark_std::{fmt, hash, rand::Rng, vec::*, Zero};
13
14#[cfg(feature = "parallel")]
15use rayon::prelude::*;
16
17pub mod general;
18pub mod mixed_radix;
19pub mod radix2;
20pub(crate) mod utils;
21
22pub use general::GeneralEvaluationDomain;
23pub use mixed_radix::MixedRadixEvaluationDomain;
24pub use radix2::Radix2EvaluationDomain;
25
26/// Defines a domain over which finite field (I)FFTs can be performed. The
27/// size of the supported FFT depends on the size of the multiplicative
28/// subgroup. For efficiency, we recommend that the field has at least one large
29/// subgroup generated by a root of unity.
30pub trait EvaluationDomain<F: FftField>:
31    Copy + Clone + hash::Hash + Eq + PartialEq + fmt::Debug + CanonicalSerialize + CanonicalDeserialize
32{
33    /// The type of the elements iterator.
34    type Elements: Iterator<Item = F> + Sized;
35
36    /// Sample an element that is *not* in the domain.
37    fn sample_element_outside_domain<R: Rng>(&self, rng: &mut R) -> F {
38        let mut t = F::rand(rng);
39        while self.evaluate_vanishing_polynomial(t).is_zero() {
40            t = F::rand(rng);
41        }
42        t
43    }
44
45    /// Construct a domain that is large enough for evaluations of a polynomial
46    /// having `num_coeffs` coefficients.
47    fn new(num_coeffs: usize) -> Option<Self>;
48
49    /// Construct a coset domain that is large enough for evaluations of a polynomial
50    /// having `num_coeffs` coefficients.
51    fn new_coset(num_coeffs: usize, offset: F) -> Option<Self> {
52        Self::new(num_coeffs)?.get_coset(offset)
53    }
54
55    /// Construct a coset domain from a subgroup domain
56    fn get_coset(&self, offset: F) -> Option<Self>;
57
58    /// Return the size of a domain that is large enough for evaluations of a
59    /// polynomial having `num_coeffs` coefficients.
60    fn compute_size_of_domain(num_coeffs: usize) -> Option<usize>;
61
62    /// Return the size of `self`.
63    fn size(&self) -> usize;
64
65    /// Return the size of `self` as a field element.
66    fn size_as_field_element(&self) -> F {
67        F::from(self.size() as u64)
68    }
69
70    /// Return log_2(size) of `self`.
71    fn log_size_of_group(&self) -> u64;
72
73    /// Return the inverse of `self.size_as_field_element()`.
74    fn size_inv(&self) -> F;
75
76    /// Return the generator for the multiplicative subgroup that defines this domain.
77    fn group_gen(&self) -> F;
78
79    /// Return the group inverse of `self.group_gen()`.
80    fn group_gen_inv(&self) -> F;
81
82    /// Return the group offset that defines this domain.
83    fn coset_offset(&self) -> F;
84
85    /// Return the inverse of `self.offset()`.
86    fn coset_offset_inv(&self) -> F;
87
88    /// Return `offset^size`.
89    fn coset_offset_pow_size(&self) -> F;
90
91    /// Compute a FFT.
92    #[inline]
93    fn fft<T: DomainCoeff<F>>(&self, coeffs: &[T]) -> Vec<T> {
94        let mut coeffs = coeffs.to_vec();
95        self.fft_in_place(&mut coeffs);
96        coeffs
97    }
98
99    /// Compute a FFT, modifying the vector in place.
100    fn fft_in_place<T: DomainCoeff<F>>(&self, coeffs: &mut Vec<T>);
101
102    /// Compute a IFFT.
103    #[inline]
104    fn ifft<T: DomainCoeff<F>>(&self, evals: &[T]) -> Vec<T> {
105        let mut evals = evals.to_vec();
106        self.ifft_in_place(&mut evals);
107        evals
108    }
109
110    /// Compute a IFFT, modifying the vector in place.
111    fn ifft_in_place<T: DomainCoeff<F>>(&self, evals: &mut Vec<T>);
112
113    /// Multiply the `i`-th element of `coeffs` with `g^i`.
114    fn distribute_powers<T: DomainCoeff<F>>(coeffs: &mut [T], g: F) {
115        Self::distribute_powers_and_mul_by_const(coeffs, g, F::one());
116    }
117
118    /// Multiply the `i`-th element of `coeffs` with `c*g^i`.
119    #[cfg(not(feature = "parallel"))]
120    fn distribute_powers_and_mul_by_const<T: DomainCoeff<F>>(coeffs: &mut [T], g: F, c: F) {
121        // invariant: pow = c*g^i at the ith iteration of the loop
122        let mut pow = c;
123        coeffs.iter_mut().for_each(|coeff| {
124            *coeff *= pow;
125            pow *= &g
126        })
127    }
128
129    /// Multiply the `i`-th element of `coeffs` with `c*g^i`.
130    #[cfg(feature = "parallel")]
131    fn distribute_powers_and_mul_by_const<T: DomainCoeff<F>>(coeffs: &mut [T], g: F, c: F) {
132        use ark_std::cmp::max;
133        let min_parallel_chunk_size = 1024;
134        let num_cpus_available = rayon::current_num_threads();
135        let num_elem_per_thread = max(coeffs.len() / num_cpus_available, min_parallel_chunk_size);
136
137        ark_std::cfg_chunks_mut!(coeffs, num_elem_per_thread)
138            .enumerate()
139            .for_each(|(i, chunk)| {
140                let offset = c * g.pow([(i * num_elem_per_thread) as u64]);
141                let mut pow = offset;
142                chunk.iter_mut().for_each(|coeff| {
143                    *coeff *= pow;
144                    pow *= &g
145                })
146            });
147    }
148
149    /// Evaluate all the lagrange polynomials defined by this domain at the
150    /// point `tau`. This is computed in time O(|domain|).
151    /// Then given the evaluations of a degree d polynomial P over this domain,
152    /// where d < |domain|, `P(tau)` can be computed as
153    /// `P(tau) = sum_{i in [|Domain|]} L_{i, Domain}(tau) * P(g^i)`.
154    /// `L_{i, Domain}` is the value of the i-th lagrange coefficient
155    /// in the returned vector.
156    fn evaluate_all_lagrange_coefficients(&self, tau: F) -> Vec<F> {
157        // Evaluate all Lagrange polynomials at tau to get the lagrange coefficients.
158        // Define the following as
159        // - H: The coset we are in, with generator g and offset h
160        // - m: The size of the coset H
161        // - Z_H: The vanishing polynomial for H. Z_H(x) = prod_{i in m} (x - hg^i) = x^m - h^m
162        // - v_i: A sequence of values, where v_0 = 1/(m * h^(m-1)), and v_{i + 1} = g * v_i
163        //
164        // We then compute L_{i,H}(tau) as `L_{i,H}(tau) = Z_H(tau) * v_i / (tau - h * g^i)`
165        //
166        // However, if tau in H, both the numerator and denominator equal 0
167        // when i corresponds to the value tau equals, and the coefficient is 0
168        // everywhere else. We handle this case separately, and we can easily
169        // detect by checking if the vanishing poly is 0.
170        let size = self.size();
171        let z_h_at_tau = self.evaluate_vanishing_polynomial(tau);
172        let offset = self.coset_offset();
173        let group_gen = self.group_gen();
174        if z_h_at_tau.is_zero() {
175            // In this case, we know that tau = hg^i, for some value i.
176            // Then i-th lagrange coefficient in this case is then simply 1,
177            // and all other lagrange coefficients are 0.
178            // Thus we find i by brute force.
179            let mut u = vec![F::zero(); size];
180            let mut omega_i = offset;
181            for u_i in u.iter_mut().take(size) {
182                if omega_i == tau {
183                    *u_i = F::one();
184                    break;
185                }
186                omega_i *= &group_gen;
187            }
188            u
189        } else {
190            // In this case we have to compute `Z_H(tau) * v_i / (tau - h g^i)`
191            // for i in 0..size
192            // We actually compute this by computing (Z_H(tau) * v_i)^{-1} * (tau - h g^i)
193            // and then batch inverting to get the correct lagrange coefficients.
194            // We let `l_i = (Z_H(tau) * v_i)^-1` and `r_i = tau - h g^i`
195            // Notice that since Z_H(tau) is i-independent,
196            // and v_i = g * v_{i-1}, it follows that
197            // l_i = g^-1 * l_{i-1}
198            // TODO: consider caching the computation of l_i to save N multiplications
199            use ark_ff::fields::batch_inversion;
200
201            let group_gen_inv = self.group_gen_inv();
202
203            // v_0_inv = m * h^(m-1)
204            let v_0_inv = self.size_as_field_element() * offset.pow([size as u64 - 1]);
205            let mut l_i = z_h_at_tau.inverse().unwrap() * v_0_inv;
206            let mut negative_cur_elem = -offset;
207            let mut lagrange_coefficients_inverse = vec![F::zero(); size];
208            for coeff in &mut lagrange_coefficients_inverse {
209                let r_i = tau + negative_cur_elem;
210                *coeff = l_i * r_i;
211                // Increment l_i and negative_cur_elem
212                l_i *= &group_gen_inv;
213                negative_cur_elem *= &group_gen;
214            }
215
216            // Invert the lagrange coefficients inverse, to get the actual coefficients,
217            // and return these
218            batch_inversion(lagrange_coefficients_inverse.as_mut_slice());
219            lagrange_coefficients_inverse
220        }
221    }
222
223    /// Return the sparse vanishing polynomial.
224    fn vanishing_polynomial(&self) -> crate::univariate::SparsePolynomial<F> {
225        let constant_coeff = self.coset_offset_pow_size();
226        let coeffs = vec![(0, -constant_coeff), (self.size(), F::one())];
227        crate::univariate::SparsePolynomial::from_coefficients_vec(coeffs)
228    }
229
230    /// This evaluates the vanishing polynomial for this domain at tau.
231    fn evaluate_vanishing_polynomial(&self, tau: F) -> F {
232        // TODO: Consider precomputed exponentiation tables if we need this to be
233        // faster.
234        tau.pow([self.size() as u64]) - self.coset_offset_pow_size()
235    }
236
237    /// Return the filter polynomial of `self` with respect to the subdomain `subdomain`.
238    /// Assumes that `subdomain` is contained within `self`.
239    ///
240    /// # Panics
241    ///
242    /// Panics if `subdomain` is not contained within `self`.
243    fn filter_polynomial(&self, subdomain: &Self) -> crate::univariate::DensePolynomial<F> {
244        use crate::univariate::DenseOrSparsePolynomial;
245        let self_vanishing_poly = DenseOrSparsePolynomial::from(
246            &self.vanishing_polynomial()
247                * (subdomain.size_as_field_element()
248                    * subdomain.coset_offset().pow([subdomain.size() as u64])),
249        );
250        let subdomain_vanishing_poly = DenseOrSparsePolynomial::from(
251            &subdomain.vanishing_polynomial() * self.size_as_field_element(),
252        );
253        let (quotient, remainder) = self_vanishing_poly
254            .divide_with_q_and_r(&subdomain_vanishing_poly)
255            .unwrap();
256        assert!(remainder.is_zero());
257        quotient
258    }
259
260    /// This evaluates at `tau` the filter polynomial for `self` with respect
261    /// to the subdomain `subdomain`.
262    fn evaluate_filter_polynomial(&self, subdomain: &Self, tau: F) -> F {
263        let v_subdomain_of_tau = subdomain.evaluate_vanishing_polynomial(tau);
264        if v_subdomain_of_tau.is_zero() {
265            F::one()
266        } else {
267            subdomain.size_as_field_element() * self.evaluate_vanishing_polynomial(tau)
268                / (self.size_as_field_element() * v_subdomain_of_tau)
269        }
270    }
271
272    /// Returns the `i`-th element of the domain.
273    fn element(&self, i: usize) -> F {
274        let mut result = self.group_gen().pow([i as u64]);
275        if !self.coset_offset().is_one() {
276            result *= self.coset_offset()
277        }
278        result
279    }
280
281    /// Return an iterator over the elements of the domain.
282    fn elements(&self) -> Self::Elements;
283
284    /// Given an index which assumes the first elements of this domain are the
285    /// elements of another (sub)domain,
286    /// this returns the actual index into this domain.
287    fn reindex_by_subdomain(&self, other: Self, index: usize) -> usize {
288        assert!(self.size() >= other.size());
289        // Let this subgroup be G, and the subgroup we're re-indexing by be S.
290        // Since its a subgroup, the 0th element of S is at index 0 in G, the first
291        // element of S is at index |G|/|S|, the second at 2*|G|/|S|, etc.
292        // Thus for an index i that corresponds to S, the index in G is i*|G|/|S|
293        let period = self.size() / other.size();
294        if index < other.size() {
295            index * period
296        } else {
297            // Let i now be the index of this element in G \ S
298            // Let x be the number of elements in G \ S, for every element in S. Then x =
299            // (|G|/|S| - 1). At index i in G \ S, the number of elements in S
300            // that appear before the index in G to which i corresponds to, is
301            // floor(i / x) + 1. The +1 is because index 0 of G is S_0, so the
302            // position is offset by at least one. The floor(i / x) term is
303            // because after x elements in G \ S, there is one more element from S
304            // that will have appeared in G.
305            let i = index - other.size();
306            let x = period - 1;
307            i + (i / x) + 1
308        }
309    }
310
311    /// Perform O(n) multiplication of two polynomials that are presented by
312    /// their evaluations in the domain.
313    /// Returns the evaluations of the product over the domain.
314    ///
315    /// Assumes that the domain is large enough to allow for successful
316    /// interpolation after multiplication.
317    #[must_use]
318    fn mul_polynomials_in_evaluation_domain(&self, self_evals: &[F], other_evals: &[F]) -> Vec<F> {
319        assert_eq!(self_evals.len(), other_evals.len());
320        let mut result = self_evals.to_vec();
321
322        ark_std::cfg_iter_mut!(result)
323            .zip(other_evals)
324            .for_each(|(a, b)| *a *= b);
325
326        result
327    }
328}
329
330/// Types that can be FFT-ed must implement this trait.
331pub trait DomainCoeff<F: FftField>:
332    Copy
333    + Send
334    + Sync
335    + core::ops::Add<Output = Self>
336    + core::ops::Sub<Output = Self>
337    + core::ops::AddAssign
338    + core::ops::SubAssign
339    + ark_ff::Zero
340    + core::ops::MulAssign<F>
341    + core::fmt::Debug
342    + PartialEq
343{
344}
345
346impl<T, F> DomainCoeff<F> for T
347where
348    F: FftField,
349    T: Copy
350        + Send
351        + Sync
352        + core::ops::Add<Output = Self>
353        + core::ops::Sub<Output = Self>
354        + core::ops::AddAssign
355        + core::ops::SubAssign
356        + ark_ff::Zero
357        + core::ops::MulAssign<F>
358        + core::fmt::Debug
359        + PartialEq,
360{
361}