pub type G2Projective<P> = Projective<<P as BnConfig>::G2Config>;
Aliased Type§
struct G2Projective<P> {
pub x: <<P as BnConfig>::G2Config as CurveConfig>::BaseField,
pub y: <<P as BnConfig>::G2Config as CurveConfig>::BaseField,
pub z: <<P as BnConfig>::G2Config as CurveConfig>::BaseField,
}
Fields§
§x: <<P as BnConfig>::G2Config as CurveConfig>::BaseField
X / Z
projection of the affine X
y: <<P as BnConfig>::G2Config as CurveConfig>::BaseField
Y / Z
projection of the affine Y
z: <<P as BnConfig>::G2Config as CurveConfig>::BaseField
Projective multiplicative inverse. Will be 0
only at infinity.
Implementations
Source§impl<P: SWCurveConfig> Projective<P>
impl<P: SWCurveConfig> Projective<P>
Sourcepub const fn new_unchecked(
x: P::BaseField,
y: P::BaseField,
z: P::BaseField,
) -> Self
pub const fn new_unchecked( x: P::BaseField, y: P::BaseField, z: P::BaseField, ) -> Self
Constructs a new group element without checking whether the coordinates specify a point in the subgroup.
Trait Implementations
Source§impl<'a, P: SWCurveConfig> Add<&'a Projective<P>> for Projective<P>
impl<'a, P: SWCurveConfig> Add<&'a Projective<P>> for Projective<P>
Source§impl<'a, P: SWCurveConfig> Add<&'a mut Projective<P>> for Projective<P>
impl<'a, P: SWCurveConfig> Add<&'a mut Projective<P>> for Projective<P>
Source§impl<P: SWCurveConfig, T: Borrow<Affine<P>>> Add<T> for Projective<P>
impl<P: SWCurveConfig, T: Borrow<Affine<P>>> Add<T> for Projective<P>
Source§impl<P: SWCurveConfig> Add for Projective<P>
impl<P: SWCurveConfig> Add for Projective<P>
Source§impl<'a, P: SWCurveConfig> AddAssign<&'a Projective<P>> for Projective<P>
impl<'a, P: SWCurveConfig> AddAssign<&'a Projective<P>> for Projective<P>
Source§fn add_assign(&mut self, other: &'a Self)
fn add_assign(&mut self, other: &'a Self)
+=
operation. Read moreSource§impl<'a, P: SWCurveConfig> AddAssign<&'a mut Projective<P>> for Projective<P>
impl<'a, P: SWCurveConfig> AddAssign<&'a mut Projective<P>> for Projective<P>
Source§fn add_assign(&mut self, other: &'a mut Self)
fn add_assign(&mut self, other: &'a mut Self)
+=
operation. Read moreSource§impl<P: SWCurveConfig, T: Borrow<Affine<P>>> AddAssign<T> for Projective<P>
impl<P: SWCurveConfig, T: Borrow<Affine<P>>> AddAssign<T> for Projective<P>
Source§fn add_assign(&mut self, other: T)
fn add_assign(&mut self, other: T)
Source§impl<P: SWCurveConfig> AddAssign for Projective<P>
impl<P: SWCurveConfig> AddAssign for Projective<P>
Source§fn add_assign(&mut self, other: Self)
fn add_assign(&mut self, other: Self)
+=
operation. Read moreSource§impl<P: SWCurveConfig> AdditiveGroup for Projective<P>
impl<P: SWCurveConfig> AdditiveGroup for Projective<P>
Source§fn double_in_place(&mut self) -> &mut Self
fn double_in_place(&mut self) -> &mut Self
Sets self = 2 * self
. Note that Jacobian formulae are incomplete, and
so doubling cannot be computed as self + self
. Instead, this
implementation uses the following specialized doubling formulae:
type Scalar = <P as CurveConfig>::ScalarField
Source§fn neg_in_place(&mut self) -> &mut Self
fn neg_in_place(&mut self) -> &mut Self
self
in place.Source§impl<P: SWCurveConfig> CanonicalDeserialize for Projective<P>
impl<P: SWCurveConfig> CanonicalDeserialize for Projective<P>
Source§fn deserialize_with_mode<R: Read>(
reader: R,
compress: Compress,
validate: Validate,
) -> Result<Self, SerializationError>
fn deserialize_with_mode<R: Read>( reader: R, compress: Compress, validate: Validate, ) -> Result<Self, SerializationError>
fn deserialize_compressed<R>(reader: R) -> Result<Self, SerializationError>where
R: Read,
fn deserialize_compressed_unchecked<R>(
reader: R,
) -> Result<Self, SerializationError>where
R: Read,
fn deserialize_uncompressed<R>(reader: R) -> Result<Self, SerializationError>where
R: Read,
fn deserialize_uncompressed_unchecked<R>(
reader: R,
) -> Result<Self, SerializationError>where
R: Read,
Source§impl<P: SWCurveConfig> CanonicalSerialize for Projective<P>
impl<P: SWCurveConfig> CanonicalSerialize for Projective<P>
Source§fn serialize_with_mode<W: Write>(
&self,
writer: W,
compress: Compress,
) -> Result<(), SerializationError>
fn serialize_with_mode<W: Write>( &self, writer: W, compress: Compress, ) -> Result<(), SerializationError>
fn serialized_size(&self, compress: Compress) -> usize
fn serialize_compressed<W>(&self, writer: W) -> Result<(), SerializationError>where
W: Write,
fn compressed_size(&self) -> usize
fn serialize_uncompressed<W>(&self, writer: W) -> Result<(), SerializationError>where
W: Write,
fn uncompressed_size(&self) -> usize
Source§impl<P: SWCurveConfig> Clone for Projective<P>
impl<P: SWCurveConfig> Clone for Projective<P>
Source§impl<P: SWCurveConfig> CurveGroup for Projective<P>
impl<P: SWCurveConfig> CurveGroup for Projective<P>
Source§fn normalize_batch(v: &[Self]) -> Vec<Self::Affine>
fn normalize_batch(v: &[Self]) -> Vec<Self::Affine>
Normalizes a slice of projective elements so that conversion to affine is cheap.
In more detail, this method converts a curve point in Jacobian coordinates (x, y, z) into an equivalent representation (x/z^2, y/z^3, 1).
For N = v.len()
, this costs 1 inversion + 6N field multiplications + N
field squarings.
(Where batch inversion comprises 3N field multiplications + 1 inversion of these operations)
type Config = P
Source§type BaseField = <P as CurveConfig>::BaseField
type BaseField = <P as CurveConfig>::BaseField
Source§type FullGroup = Affine<P>
type FullGroup = Affine<P>
Source§fn into_affine(self) -> Self::Affine
fn into_affine(self) -> Self::Affine
self
into the affine representation.Source§impl<P: SWCurveConfig> Debug for Projective<P>
impl<P: SWCurveConfig> Debug for Projective<P>
Source§impl<P: SWCurveConfig> Default for Projective<P>
impl<P: SWCurveConfig> Default for Projective<P>
Source§impl<P: SWCurveConfig> Display for Projective<P>
impl<P: SWCurveConfig> Display for Projective<P>
Source§impl<P: SWCurveConfig> From<Affine<P>> for Projective<P>
impl<P: SWCurveConfig> From<Affine<P>> for Projective<P>
Source§fn from(p: Affine<P>) -> Projective<P>
fn from(p: Affine<P>) -> Projective<P>
Source§impl<P: SWCurveConfig> Hash for Projective<P>
impl<P: SWCurveConfig> Hash for Projective<P>
Source§impl<P: SWCurveConfig, T: Borrow<P::ScalarField>> Mul<T> for Projective<P>
impl<P: SWCurveConfig, T: Borrow<P::ScalarField>> Mul<T> for Projective<P>
Source§impl<P: SWCurveConfig, T: Borrow<P::ScalarField>> MulAssign<T> for Projective<P>
impl<P: SWCurveConfig, T: Borrow<P::ScalarField>> MulAssign<T> for Projective<P>
Source§fn mul_assign(&mut self, other: T)
fn mul_assign(&mut self, other: T)
*=
operation. Read moreSource§impl<P: SWCurveConfig> Neg for Projective<P>
impl<P: SWCurveConfig> Neg for Projective<P>
Source§impl<P: SWCurveConfig> PartialEq<Affine<P>> for Projective<P>
impl<P: SWCurveConfig> PartialEq<Affine<P>> for Projective<P>
Source§impl<P: SWCurveConfig> PartialEq for Projective<P>
impl<P: SWCurveConfig> PartialEq for Projective<P>
Source§impl<P: SWCurveConfig> PrimeGroup for Projective<P>
impl<P: SWCurveConfig> PrimeGroup for Projective<P>
Source§type ScalarField = <P as CurveConfig>::ScalarField
type ScalarField = <P as CurveConfig>::ScalarField
F_r
, where r
is the order of this group.Source§fn mul_bigint(&self, other: impl AsRef<[u64]>) -> Self
fn mul_bigint(&self, other: impl AsRef<[u64]>) -> Self
Source§fn mul_bits_be(&self, other: impl Iterator<Item = bool>) -> Self
fn mul_bits_be(&self, other: impl Iterator<Item = bool>) -> Self
other * self
, where other
is a big-endian
bit representation of some integer.Source§impl<P: SWCurveConfig> ScalarMul for Projective<P>
impl<P: SWCurveConfig> ScalarMul for Projective<P>
const NEGATION_IS_CHEAP: bool = true
type MulBase = Affine<P>
fn batch_convert_to_mul_base(bases: &[Self]) -> Vec<Self::MulBase>
Source§fn batch_mul(self, v: &[Self::ScalarField]) -> Vec<Self::MulBase>
fn batch_mul(self, v: &[Self::ScalarField]) -> Vec<Self::MulBase>
Source§fn batch_mul_with_preprocessing(
table: &BatchMulPreprocessing<Self>,
v: &[Self::ScalarField],
) -> Vec<Self::MulBase>
fn batch_mul_with_preprocessing( table: &BatchMulPreprocessing<Self>, v: &[Self::ScalarField], ) -> Vec<Self::MulBase>
Source§impl<'a, P: SWCurveConfig> Sub<&'a Projective<P>> for Projective<P>
impl<'a, P: SWCurveConfig> Sub<&'a Projective<P>> for Projective<P>
Source§impl<'a, P: SWCurveConfig> Sub<&'a mut Projective<P>> for Projective<P>
impl<'a, P: SWCurveConfig> Sub<&'a mut Projective<P>> for Projective<P>
Source§impl<P: SWCurveConfig, T: Borrow<Affine<P>>> Sub<T> for Projective<P>
impl<P: SWCurveConfig, T: Borrow<Affine<P>>> Sub<T> for Projective<P>
Source§impl<P: SWCurveConfig> Sub for Projective<P>
impl<P: SWCurveConfig> Sub for Projective<P>
Source§impl<'a, P: SWCurveConfig> SubAssign<&'a Projective<P>> for Projective<P>
impl<'a, P: SWCurveConfig> SubAssign<&'a Projective<P>> for Projective<P>
Source§fn sub_assign(&mut self, other: &'a Self)
fn sub_assign(&mut self, other: &'a Self)
-=
operation. Read moreSource§impl<'a, P: SWCurveConfig> SubAssign<&'a mut Projective<P>> for Projective<P>
impl<'a, P: SWCurveConfig> SubAssign<&'a mut Projective<P>> for Projective<P>
Source§fn sub_assign(&mut self, other: &'a mut Self)
fn sub_assign(&mut self, other: &'a mut Self)
-=
operation. Read moreSource§impl<P: SWCurveConfig, T: Borrow<Affine<P>>> SubAssign<T> for Projective<P>
impl<P: SWCurveConfig, T: Borrow<Affine<P>>> SubAssign<T> for Projective<P>
Source§fn sub_assign(&mut self, other: T)
fn sub_assign(&mut self, other: T)
-=
operation. Read moreSource§impl<P: SWCurveConfig> SubAssign for Projective<P>
impl<P: SWCurveConfig> SubAssign for Projective<P>
Source§fn sub_assign(&mut self, other: Self)
fn sub_assign(&mut self, other: Self)
-=
operation. Read moreSource§impl<'a, P: SWCurveConfig> Sum<&'a Projective<P>> for Projective<P>
impl<'a, P: SWCurveConfig> Sum<&'a Projective<P>> for Projective<P>
Source§impl<P: SWCurveConfig, T: Borrow<Affine<P>>> Sum<T> for Projective<P>
impl<P: SWCurveConfig, T: Borrow<Affine<P>>> Sum<T> for Projective<P>
Source§impl<P: SWCurveConfig> Sum for Projective<P>
impl<P: SWCurveConfig> Sum for Projective<P>
Source§impl<M: SWCurveConfig, ConstraintF: Field> ToConstraintField<ConstraintF> for Projective<M>where
M::BaseField: ToConstraintField<ConstraintF>,
impl<M: SWCurveConfig, ConstraintF: Field> ToConstraintField<ConstraintF> for Projective<M>where
M::BaseField: ToConstraintField<ConstraintF>,
fn to_field_elements(&self) -> Option<Vec<ConstraintF>>
Source§impl<P: SWCurveConfig> Valid for Projective<P>
impl<P: SWCurveConfig> Valid for Projective<P>
fn check(&self) -> Result<(), SerializationError>
fn batch_check<'a>(
batch: impl Iterator<Item = &'a Self> + Send,
) -> Result<(), SerializationError>where
Self: 'a,
Source§impl<P: SWCurveConfig> VariableBaseMSM for Projective<P>
impl<P: SWCurveConfig> VariableBaseMSM for Projective<P>
Source§fn msm(
bases: &[Self::MulBase],
bigints: &[Self::ScalarField],
) -> Result<Self, usize>
fn msm( bases: &[Self::MulBase], bigints: &[Self::ScalarField], ) -> Result<Self, usize>
Source§fn msm_unchecked(bases: &[Self::MulBase], scalars: &[Self::ScalarField]) -> Self
fn msm_unchecked(bases: &[Self::MulBase], scalars: &[Self::ScalarField]) -> Self
PrimeField
elements in scalars
and the corresponding group elements in bases
. Read more