1use ark_ff::{
2 fields::{Field, Fp2},
3 AdditiveGroup,
4};
5use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
6use ark_std::vec::*;
7use educe::Educe;
8use num_traits::One;
9
10use crate::{
11 bn::{BnConfig, TwistType},
12 models::short_weierstrass::SWCurveConfig,
13 short_weierstrass::{Affine, Projective},
14 AffineRepr, CurveGroup,
15};
16
17pub type G2Affine<P> = Affine<<P as BnConfig>::G2Config>;
18pub type G2Projective<P> = Projective<<P as BnConfig>::G2Config>;
19
20#[derive(Educe, CanonicalSerialize, CanonicalDeserialize)]
21#[educe(Clone, Debug, PartialEq, Eq)]
22pub struct G2Prepared<P: BnConfig> {
23 pub ell_coeffs: Vec<EllCoeff<P>>,
26 pub infinity: bool,
27}
28
29pub type EllCoeff<P> = (
30 Fp2<<P as BnConfig>::Fp2Config>,
31 Fp2<<P as BnConfig>::Fp2Config>,
32 Fp2<<P as BnConfig>::Fp2Config>,
33);
34
35#[derive(Educe)]
36#[educe(Clone, Copy, Debug)]
37pub struct G2HomProjective<P: BnConfig> {
38 x: Fp2<P::Fp2Config>,
39 y: Fp2<P::Fp2Config>,
40 z: Fp2<P::Fp2Config>,
41}
42
43impl<P: BnConfig> G2HomProjective<P> {
44 pub fn double_in_place(&mut self, two_inv: &P::Fp) -> EllCoeff<P> {
45 let mut a = self.x * &self.y;
49 a.mul_assign_by_fp(two_inv);
50 let b = self.y.square();
51 let c = self.z.square();
52 let e = P::G2Config::COEFF_B * &(c.double() + &c);
53 let f = e.double() + &e;
54 let mut g = b + &f;
55 g.mul_assign_by_fp(two_inv);
56 let h = (self.y + &self.z).square() - &(b + &c);
57 let i = e - &b;
58 let j = self.x.square();
59 let e_square = e.square();
60
61 self.x = a * &(b - &f);
62 self.y = g.square() - &(e_square.double() + &e_square);
63 self.z = b * &h;
64 match P::TWIST_TYPE {
65 TwistType::M => (i, j.double() + &j, -h),
66 TwistType::D => (-h, j.double() + &j, i),
67 }
68 }
69
70 pub fn add_in_place(&mut self, q: &G2Affine<P>) -> EllCoeff<P> {
71 let theta = self.y - &(q.y * &self.z);
74 let lambda = self.x - &(q.x * &self.z);
75 let c = theta.square();
76 let d = lambda.square();
77 let e = lambda * &d;
78 let f = self.z * &c;
79 let g = self.x * &d;
80 let h = e + &f - &g.double();
81 self.x = lambda * &h;
82 self.y = theta * &(g - &h) - &(e * &self.y);
83 self.z *= &e;
84 let j = theta * &q.x - &(lambda * &q.y);
85
86 match P::TWIST_TYPE {
87 TwistType::M => (j, -theta, lambda),
88 TwistType::D => (lambda, -theta, j),
89 }
90 }
91}
92
93impl<P: BnConfig> Default for G2Prepared<P> {
94 fn default() -> Self {
95 Self::from(G2Affine::<P>::generator())
96 }
97}
98
99impl<P: BnConfig> From<G2Affine<P>> for G2Prepared<P> {
100 fn from(q: G2Affine<P>) -> Self {
101 if q.infinity {
102 G2Prepared {
103 ell_coeffs: vec![],
104 infinity: true,
105 }
106 } else {
107 let two_inv = P::Fp::one().double().inverse().unwrap();
108 let mut ell_coeffs = vec![];
109 let mut r = G2HomProjective::<P> {
110 x: q.x,
111 y: q.y,
112 z: Fp2::one(),
113 };
114
115 let neg_q = -q;
116
117 for bit in P::ATE_LOOP_COUNT.iter().rev().skip(1) {
118 ell_coeffs.push(r.double_in_place(&two_inv));
119
120 match bit {
121 1 => ell_coeffs.push(r.add_in_place(&q)),
122 -1 => ell_coeffs.push(r.add_in_place(&neg_q)),
123 _ => continue,
124 }
125 }
126
127 let q1 = mul_by_char::<P>(q);
128 let mut q2 = mul_by_char::<P>(q1);
129
130 if P::X_IS_NEGATIVE {
131 r.y = -r.y;
132 }
133
134 q2.y = -q2.y;
135
136 ell_coeffs.push(r.add_in_place(&q1));
137 ell_coeffs.push(r.add_in_place(&q2));
138
139 Self {
140 ell_coeffs,
141 infinity: false,
142 }
143 }
144 }
145}
146
147impl<P: BnConfig> From<G2Projective<P>> for G2Prepared<P> {
148 fn from(q: G2Projective<P>) -> Self {
149 q.into_affine().into()
150 }
151}
152
153impl<'a, P: BnConfig> From<&'a G2Affine<P>> for G2Prepared<P> {
154 fn from(other: &'a G2Affine<P>) -> Self {
155 (*other).into()
156 }
157}
158
159impl<'a, P: BnConfig> From<&'a G2Projective<P>> for G2Prepared<P> {
160 fn from(q: &'a G2Projective<P>) -> Self {
161 q.into_affine().into()
162 }
163}
164
165impl<P: BnConfig> G2Prepared<P> {
166 pub fn is_zero(&self) -> bool {
167 self.infinity
168 }
169}
170
171fn mul_by_char<P: BnConfig>(r: G2Affine<P>) -> G2Affine<P> {
172 let mut s = r;
175 s.x.frobenius_map_in_place(1);
176 s.x *= &P::TWIST_MUL_BY_Q_X;
177 s.y.frobenius_map_in_place(1);
178 s.y *= &P::TWIST_MUL_BY_Q_Y;
179
180 s
181}