pub struct FqConfig;Trait Implementations§
Source§impl MontConfig<6> for FqConfig
 
impl MontConfig<6> for FqConfig
Source§fn neg_in_place(a: &mut Fp<MontBackend<FqConfig, 6usize>, 6usize>)
 
fn neg_in_place(a: &mut Fp<MontBackend<FqConfig, 6usize>, 6usize>)
Sets a = -a.
Source§const GENERATOR: Fp<MontBackend<FqConfig, 6usize>, 6usize>
 
const GENERATOR: Fp<MontBackend<FqConfig, 6usize>, 6usize>
A multiplicative generator of the field.
Self::GENERATOR is an element having multiplicative order
Self::MODULUS - 1.Source§const TWO_ADIC_ROOT_OF_UNITY: Fp<MontBackend<FqConfig, 6usize>, 6usize>
 
const TWO_ADIC_ROOT_OF_UNITY: Fp<MontBackend<FqConfig, 6usize>, 6usize>
2^s root of unity computed by GENERATOR^t
Source§const SMALL_SUBGROUP_BASE: Option<u32>
 
const SMALL_SUBGROUP_BASE: Option<u32>
An integer 
b such that there exists a multiplicative subgroup
of size b^k for some integer k.Source§const SMALL_SUBGROUP_BASE_ADICITY: Option<u32>
 
const SMALL_SUBGROUP_BASE_ADICITY: Option<u32>
The integer 
k such that there exists a multiplicative subgroup
of size Self::SMALL_SUBGROUP_BASE^k.Source§const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Fp<MontBackend<FqConfig, 6usize>, 6usize>>
 
const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Fp<MontBackend<FqConfig, 6usize>, 6usize>>
GENERATOR^((MODULUS-1) / (2^s *
SMALL_SUBGROUP_BASE^SMALL_SUBGROUP_BASE_ADICITY)).
Used for mixed-radix FFT.
Source§fn add_assign(
    a: &mut Fp<MontBackend<FqConfig, 6usize>, 6usize>,
    b: &Fp<MontBackend<FqConfig, 6usize>, 6usize>,
)
 
fn add_assign( a: &mut Fp<MontBackend<FqConfig, 6usize>, 6usize>, b: &Fp<MontBackend<FqConfig, 6usize>, 6usize>, )
Sets 
a = a + b.Source§fn sub_assign(
    a: &mut Fp<MontBackend<FqConfig, 6usize>, 6usize>,
    b: &Fp<MontBackend<FqConfig, 6usize>, 6usize>,
)
 
fn sub_assign( a: &mut Fp<MontBackend<FqConfig, 6usize>, 6usize>, b: &Fp<MontBackend<FqConfig, 6usize>, 6usize>, )
Sets 
a = a - b.Source§fn double_in_place(a: &mut Fp<MontBackend<FqConfig, 6usize>, 6usize>)
 
fn double_in_place(a: &mut Fp<MontBackend<FqConfig, 6usize>, 6usize>)
Sets 
a = 2 * a.Source§fn mul_assign(
    a: &mut Fp<MontBackend<FqConfig, 6usize>, 6usize>,
    b: &Fp<MontBackend<FqConfig, 6usize>, 6usize>,
)
 
fn mul_assign( a: &mut Fp<MontBackend<FqConfig, 6usize>, 6usize>, b: &Fp<MontBackend<FqConfig, 6usize>, 6usize>, )
This modular multiplication algorithm uses Montgomery
reduction for efficient implementation. It also additionally
uses the “no-carry optimization” outlined
here if
Self::MODULUS has (a) a non-zero MSB, and (b) at least one
zero bit in the rest of the modulus.fn square_in_place(a: &mut Fp<MontBackend<FqConfig, 6usize>, 6usize>)
fn sum_of_products<const M: usize>( a: &[Fp<MontBackend<FqConfig, 6usize>, 6usize>; M], b: &[Fp<MontBackend<FqConfig, 6usize>, 6usize>; M], ) -> Fp<MontBackend<FqConfig, 6usize>, 6usize>
Source§const R: BigInt<N> = _
 
const R: BigInt<N> = _
Let 
M be the power of 2^64 nearest to Self::MODULUS_BITS. Then
R = M % Self::MODULUS.Source§const SQRT_PRECOMP: Option<SqrtPrecomputation<Fp<MontBackend<Self, N>, N>>> = _
 
const SQRT_PRECOMP: Option<SqrtPrecomputation<Fp<MontBackend<Self, N>, N>>> = _
Precomputed material for use when computing square roots.
The default is to use the standard Tonelli-Shanks algorithm.
fn inverse( a: &Fp<MontBackend<Self, N>, N>, ) -> Option<Fp<MontBackend<Self, N>, N>>
fn from_bigint(r: BigInt<N>) -> Option<Fp<MontBackend<Self, N>, N>>
fn into_bigint(a: Fp<MontBackend<Self, N>, N>) -> BigInt<N>
Auto Trait Implementations§
impl Freeze for FqConfig
impl RefUnwindSafe for FqConfig
impl Send for FqConfig
impl Sync for FqConfig
impl Unpin for FqConfig
impl UnwindSafe for FqConfig
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
 
impl<T> BorrowMut<T> for Twhere
    T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
 
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
 
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
 
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts 
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
 
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts 
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more