pub struct FConfig64;
Trait Implementations§
Source§impl MontConfig<1> for FConfig64
impl MontConfig<1> for FConfig64
Source§fn neg_in_place(a: &mut Fp<MontBackend<FConfig64, 1usize>, 1usize>)
fn neg_in_place(a: &mut Fp<MontBackend<FConfig64, 1usize>, 1usize>)
Sets a = -a
.
Source§const GENERATOR: Fp<MontBackend<FConfig64, 1usize>, 1usize>
const GENERATOR: Fp<MontBackend<FConfig64, 1usize>, 1usize>
A multiplicative generator of the field.
Self::GENERATOR
is an element having multiplicative order
Self::MODULUS - 1
.Source§const TWO_ADIC_ROOT_OF_UNITY: Fp<MontBackend<FConfig64, 1usize>, 1usize>
const TWO_ADIC_ROOT_OF_UNITY: Fp<MontBackend<FConfig64, 1usize>, 1usize>
2^s root of unity computed by GENERATOR^t
Source§fn add_assign(
a: &mut Fp<MontBackend<FConfig64, 1usize>, 1usize>,
b: &Fp<MontBackend<FConfig64, 1usize>, 1usize>,
)
fn add_assign( a: &mut Fp<MontBackend<FConfig64, 1usize>, 1usize>, b: &Fp<MontBackend<FConfig64, 1usize>, 1usize>, )
Sets
a = a + b
.Source§fn sub_assign(
a: &mut Fp<MontBackend<FConfig64, 1usize>, 1usize>,
b: &Fp<MontBackend<FConfig64, 1usize>, 1usize>,
)
fn sub_assign( a: &mut Fp<MontBackend<FConfig64, 1usize>, 1usize>, b: &Fp<MontBackend<FConfig64, 1usize>, 1usize>, )
Sets
a = a - b
.Source§fn double_in_place(a: &mut Fp<MontBackend<FConfig64, 1usize>, 1usize>)
fn double_in_place(a: &mut Fp<MontBackend<FConfig64, 1usize>, 1usize>)
Sets
a = 2 * a
.Source§fn mul_assign(
a: &mut Fp<MontBackend<FConfig64, 1usize>, 1usize>,
b: &Fp<MontBackend<FConfig64, 1usize>, 1usize>,
)
fn mul_assign( a: &mut Fp<MontBackend<FConfig64, 1usize>, 1usize>, b: &Fp<MontBackend<FConfig64, 1usize>, 1usize>, )
This modular multiplication algorithm uses Montgomery
reduction for efficient implementation. It also additionally
uses the “no-carry optimization” outlined
here if
Self::MODULUS
has (a) a non-zero MSB, and (b) at least one
zero bit in the rest of the modulus.fn square_in_place(a: &mut Fp<MontBackend<FConfig64, 1usize>, 1usize>)
fn sum_of_products<const M: usize>( a: &[Fp<MontBackend<FConfig64, 1usize>, 1usize>; M], b: &[Fp<MontBackend<FConfig64, 1usize>, 1usize>; M], ) -> Fp<MontBackend<FConfig64, 1usize>, 1usize>
Source§const R: BigInt<N> = _
const R: BigInt<N> = _
Let
M
be the power of 2^64 nearest to Self::MODULUS_BITS
. Then
R = M % Self::MODULUS
.Source§const SMALL_SUBGROUP_BASE: Option<u32> = None
const SMALL_SUBGROUP_BASE: Option<u32> = None
An integer
b
such that there exists a multiplicative subgroup
of size b^k
for some integer k
.Source§const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = None
const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = None
The integer
k
such that there exists a multiplicative subgroup
of size Self::SMALL_SUBGROUP_BASE^k
.Source§const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Fp<MontBackend<Self, N>, N>> = None
const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Fp<MontBackend<Self, N>, N>> = None
GENERATOR^((MODULUS-1) / (2^s *
SMALL_SUBGROUP_BASE^SMALL_SUBGROUP_BASE_ADICITY)).
Used for mixed-radix FFT.
Source§const SQRT_PRECOMP: Option<SqrtPrecomputation<Fp<MontBackend<Self, N>, N>>> = _
const SQRT_PRECOMP: Option<SqrtPrecomputation<Fp<MontBackend<Self, N>, N>>> = _
Precomputed material for use when computing square roots.
The default is to use the standard Tonelli-Shanks algorithm.
fn inverse( a: &Fp<MontBackend<Self, N>, N>, ) -> Option<Fp<MontBackend<Self, N>, N>>
fn from_bigint(r: BigInt<N>) -> Option<Fp<MontBackend<Self, N>, N>>
fn into_bigint(a: Fp<MontBackend<Self, N>, N>) -> BigInt<N>
Auto Trait Implementations§
impl Freeze for FConfig64
impl RefUnwindSafe for FConfig64
impl Send for FConfig64
impl Sync for FConfig64
impl Unpin for FConfig64
impl UnwindSafe for FConfig64
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more