1use p3_field::exponentiation::exp_1420470955;
2use p3_field::{Algebra, PrimeCharacteristicRing};
3use p3_monty_31::{
4 BarrettParameters, BinomialExtensionData, FieldParameters, MontyField31, MontyParameters,
5 PackedMontyParameters, RelativelyPrimePower, TwoAdicData,
6};
7
8pub type KoalaBear = MontyField31<KoalaBearParameters>;
10
11#[derive(Copy, Clone, Default, Debug, Eq, Hash, PartialEq)]
12pub struct KoalaBearParameters;
13
14impl MontyParameters for KoalaBearParameters {
15 const PRIME: u32 = 0x7f000001;
21
22 const MONTY_BITS: u32 = 32;
23 const MONTY_MU: u32 = 0x81000001;
24}
25
26impl PackedMontyParameters for KoalaBearParameters {}
27
28impl BarrettParameters for KoalaBearParameters {}
29
30impl FieldParameters for KoalaBearParameters {
31 const MONTY_GEN: KoalaBear = KoalaBear::new(3);
32}
33
34impl RelativelyPrimePower<3> for KoalaBearParameters {
35 fn exp_root_d<R: PrimeCharacteristicRing>(val: R) -> R {
39 exp_1420470955(val)
40 }
41}
42
43impl TwoAdicData for KoalaBearParameters {
44 const TWO_ADICITY: usize = 24;
45
46 type ArrayLike = &'static [KoalaBear];
47
48 const TWO_ADIC_GENERATORS: Self::ArrayLike = &KoalaBear::new_array([
49 0x1, 0x7f000000, 0x7e010002, 0x6832fe4a, 0x8dbd69c, 0xa28f031, 0x5c4a5b99, 0x29b75a80,
50 0x17668b8a, 0x27ad539b, 0x334d48c7, 0x7744959c, 0x768fc6fa, 0x303964b2, 0x3e687d4d,
51 0x45a60e61, 0x6e2f4d7a, 0x163bd499, 0x6c4a8a45, 0x143ef899, 0x514ddcad, 0x484ef19b,
52 0x205d63c3, 0x68e7dd49, 0x6ac49f88,
53 ]);
54
55 const ROOTS_8: Self::ArrayLike =
56 &KoalaBear::new_array([0x1, 0x6832fe4a, 0x7e010002, 0x174e3650]);
57 const INV_ROOTS_8: Self::ArrayLike =
58 &KoalaBear::new_array([0x1, 0x67b1c9b1, 0xfeffff, 0x16cd01b7]);
59
60 const ROOTS_16: Self::ArrayLike = &KoalaBear::new_array([
61 0x1, 0x8dbd69c, 0x6832fe4a, 0x27ae21e2, 0x7e010002, 0x3a89a025, 0x174e3650, 0x27dfce22,
62 ]);
63 const INV_ROOTS_16: Self::ArrayLike = &KoalaBear::new_array([
64 0x1, 0x572031df, 0x67b1c9b1, 0x44765fdc, 0xfeffff, 0x5751de1f, 0x16cd01b7, 0x76242965,
65 ]);
66}
67
68impl BinomialExtensionData<4> for KoalaBearParameters {
69 const W: KoalaBear = KoalaBear::new(3);
70
71 #[inline(always)]
72 fn mul_w<A: Algebra<MontyField31<Self>>>(a: A) -> A {
73 a.double() + a
74 }
75
76 const DTH_ROOT: KoalaBear = KoalaBear::new(2113994754);
77 const EXT_GENERATOR: [KoalaBear; 4] = KoalaBear::new_array([2, 1, 0, 0]);
78 const EXT_TWO_ADICITY: usize = 26;
79
80 type ArrayLike = [[KoalaBear; 4]; 2];
81
82 const TWO_ADIC_EXTENSION_GENERATORS: Self::ArrayLike =
83 KoalaBear::new_2d_array([[0, 0, 1759267465, 0], [0, 0, 0, 777715144]]);
84}
85
86impl BinomialExtensionData<8> for KoalaBearParameters {
87 const W: KoalaBear = KoalaBear::new(3);
88 const DTH_ROOT: KoalaBear = KoalaBear::new(1748172362);
89 const EXT_GENERATOR: [KoalaBear; 8] = KoalaBear::new_array([10, 1, 0, 0, 0, 0, 0, 0]);
90 const EXT_TWO_ADICITY: usize = 27;
91
92 type ArrayLike = [[KoalaBear; 8]; 3];
93
94 const TWO_ADIC_EXTENSION_GENERATORS: Self::ArrayLike = KoalaBear::new_2d_array([
95 [0, 0, 0, 0, 1759267465, 0, 0, 0],
96 [0, 0, 0, 0, 0, 0, 777715144, 0],
97 [0, 0, 0, 0, 0, 0, 0, 14348907],
98 ]);
99
100 #[inline(always)]
101 fn mul_w<A: Algebra<MontyField31<Self>>>(a: A) -> A {
102 a.double() + a
103 }
104}
105
106#[cfg(test)]
107mod tests {
108 use num_bigint::BigUint;
109 use p3_field::extension::BinomialExtensionField;
110 use p3_field::{InjectiveMonomial, PermutationMonomial, PrimeField64, TwoAdicField};
111 use p3_field_testing::{
112 test_field, test_field_dft, test_prime_field, test_prime_field_32, test_prime_field_64,
113 test_two_adic_field,
114 };
115
116 use super::*;
117
118 type F = KoalaBear;
119 type EF = BinomialExtensionField<F, 4>;
120
121 #[test]
122 fn test_koala_bear_two_adicity_generators() {
123 let base = KoalaBear::from_u32(0x6ac49f88);
124 for bits in 0..=KoalaBear::TWO_ADICITY {
125 assert_eq!(
126 KoalaBear::two_adic_generator(bits),
127 base.exp_power_of_2(KoalaBear::TWO_ADICITY - bits)
128 );
129 }
130 }
131
132 #[test]
133 fn test_koala_bear() {
134 let f = F::from_u32(100);
135 assert_eq!(f.as_canonical_u64(), 100);
136
137 let f_1 = F::ONE;
138 let f_2 = F::TWO;
139 let f_p_minus_1 = F::NEG_ONE;
140 let f_p_minus_2 = F::NEG_ONE + F::NEG_ONE;
141 let m1 = F::from_u32(0x34167c58);
142 let m2 = F::from_u32(0x61f3207b);
143 let expected_prod = F::from_u32(0x54b46b81);
144 assert_eq!(m1 * m2, expected_prod);
145
146 assert_eq!(m1.injective_exp_n().injective_exp_root_n(), m1);
147 assert_eq!(m2.injective_exp_n().injective_exp_root_n(), m2);
148 assert_eq!(f_2.injective_exp_n().injective_exp_root_n(), f_2);
149
150 let f_serialized = serde_json::to_string(&f).unwrap();
151 let f_deserialized: F = serde_json::from_str(&f_serialized).unwrap();
152 assert_eq!(f, f_deserialized);
153
154 let f_1_serialized = serde_json::to_string(&f_1).unwrap();
155 let f_1_deserialized: F = serde_json::from_str(&f_1_serialized).unwrap();
156 let f_1_serialized_again = serde_json::to_string(&f_1_deserialized).unwrap();
157 let f_1_deserialized_again: F = serde_json::from_str(&f_1_serialized_again).unwrap();
158 assert_eq!(f_1, f_1_deserialized);
159 assert_eq!(f_1, f_1_deserialized_again);
160
161 let f_2_serialized = serde_json::to_string(&f_2).unwrap();
162 let f_2_deserialized: F = serde_json::from_str(&f_2_serialized).unwrap();
163 assert_eq!(f_2, f_2_deserialized);
164
165 let f_p_minus_1_serialized = serde_json::to_string(&f_p_minus_1).unwrap();
166 let f_p_minus_1_deserialized: F = serde_json::from_str(&f_p_minus_1_serialized).unwrap();
167 assert_eq!(f_p_minus_1, f_p_minus_1_deserialized);
168
169 let f_p_minus_2_serialized = serde_json::to_string(&f_p_minus_2).unwrap();
170 let f_p_minus_2_deserialized: F = serde_json::from_str(&f_p_minus_2_serialized).unwrap();
171 assert_eq!(f_p_minus_2, f_p_minus_2_deserialized);
172
173 let m1_serialized = serde_json::to_string(&m1).unwrap();
174 let m1_deserialized: F = serde_json::from_str(&m1_serialized).unwrap();
175 assert_eq!(m1, m1_deserialized);
176
177 let m2_serialized = serde_json::to_string(&m2).unwrap();
178 let m2_deserialized: F = serde_json::from_str(&m2_serialized).unwrap();
179 assert_eq!(m2, m2_deserialized);
180 }
181
182 const ZEROS: [KoalaBear; 1] = [KoalaBear::ZERO];
184 const ONES: [KoalaBear; 1] = [KoalaBear::ONE];
185
186 fn multiplicative_group_prime_factorization() -> [(BigUint, u32); 2] {
189 [(BigUint::from(2u8), 24), (BigUint::from(127u8), 1)]
190 }
191
192 test_field!(
193 crate::KoalaBear,
194 &super::ZEROS,
195 &super::ONES,
196 &super::multiplicative_group_prime_factorization()
197 );
198 test_two_adic_field!(crate::KoalaBear);
199
200 test_field_dft!(radix2dit, crate::KoalaBear, super::EF, p3_dft::Radix2Dit<_>);
201 test_field_dft!(bowers, crate::KoalaBear, super::EF, p3_dft::Radix2Bowers);
202 test_field_dft!(
203 parallel,
204 crate::KoalaBear,
205 super::EF,
206 p3_dft::Radix2DitParallel::<crate::KoalaBear>
207 );
208 test_field_dft!(
209 recur_dft,
210 crate::KoalaBear,
211 super::EF,
212 p3_monty_31::dft::RecursiveDft<_>
213 );
214 test_prime_field!(crate::KoalaBear);
215 test_prime_field_64!(crate::KoalaBear, &super::ZEROS, &super::ONES);
216 test_prime_field_32!(crate::KoalaBear, &super::ZEROS, &super::ONES);
217}