p3_field/field.rs
1use alloc::vec;
2use alloc::vec::Vec;
3use core::fmt::{Debug, Display};
4use core::hash::Hash;
5use core::iter::{Product, Sum};
6use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
7use core::{array, slice};
8
9use num_bigint::BigUint;
10use p3_maybe_rayon::prelude::*;
11use p3_util::{flatten_to_base, iter_array_chunks_padded};
12use serde::Serialize;
13use serde::de::DeserializeOwned;
14
15use crate::exponentiation::bits_u64;
16use crate::integers::{QuotientMap, from_integer_types};
17use crate::packed::PackedField;
18use crate::{Packable, PackedFieldExtension, PackedValue};
19
20/// A commutative ring, `R`, with prime characteristic, `p`.
21///
22/// This permits elements like:
23/// - A single finite field element.
24/// - A symbolic expression which would evaluate to a field element.
25/// - An array of finite field elements.
26/// - A polynomial with coefficients in a finite field.
27///
28/// ### Mathematical Description
29///
30/// Mathematically, a commutative ring is a set of objects which supports an addition-like
31/// like operation, `+`, and a multiplication-like operation `*`.
32///
33/// Let `x, y, z` denote arbitrary elements of the set.
34///
35/// Then, an operation is addition-like if it satisfies the following properties:
36/// - Commutativity => `x + y = y + x`
37/// - Associativity => `x + (y + z) = (x + y) + z`
38/// - Unit => There exists an identity element `ZERO` satisfying `x + ZERO = x`.
39/// - Inverses => For every `x` there exists a unique inverse `(-x)` satisfying `x + (-x) = ZERO`
40///
41/// Similarly, an operation is multiplication-like if it satisfies the following properties:
42/// - Commutativity => `x * y = y * x`
43/// - Associativity => `x * (y * z) = (x * y) * z`
44/// - Unit => There exists an identity element `ONE` satisfying `x * ONE = x`.
45/// - Distributivity => The two operations `+` and `*` must together satisfy `x * (y + z) = (x * y) + (x * z)`
46///
47/// Unlike in the addition case, we do not require inverses to exist with respect to `*`.
48///
49/// The simplest examples of commutative rings are the integers (`ℤ`), and the integers mod `N` (`ℤ/N`).
50///
51/// The characteristic of a ring is the smallest positive integer `r` such that `0 = r . 1 = 1 + 1 + ... + 1 (r times)`.
52/// For example, the characteristic of the modulo ring `ℤ/N` is `N`.
53///
54/// Rings with prime characteristic are particularly special due to their close relationship with finite fields.
55pub trait PrimeCharacteristicRing:
56 Sized
57 + Default
58 + Clone
59 + Add<Output = Self>
60 + AddAssign
61 + Sub<Output = Self>
62 + SubAssign
63 + Neg<Output = Self>
64 + Mul<Output = Self>
65 + MulAssign
66 + Sum
67 + Product
68 + Debug
69{
70 /// The field `ℤ/p` where the characteristic of this ring is p.
71 type PrimeSubfield: PrimeField;
72
73 /// The additive identity of the ring.
74 ///
75 /// For every element `a` in the ring we require the following properties:
76 ///
77 /// `a + ZERO = ZERO + a = a,`
78 ///
79 /// `a + (-a) = (-a) + a = ZERO.`
80 const ZERO: Self;
81
82 /// The multiplicative identity of the ring.
83 ///
84 /// For every element `a` in the ring we require the following property:
85 ///
86 /// `a*ONE = ONE*a = a.`
87 const ONE: Self;
88
89 /// The element in the ring given by `ONE + ONE`.
90 ///
91 /// This is provided as a convenience as `TWO` occurs regularly in
92 /// the proving system. This also is slightly faster than computing
93 /// it via addition. Note that multiplication by `TWO` is discouraged.
94 /// Instead of `a * TWO` use `a.double()` which will be faster.
95 ///
96 /// If the field has characteristic 2 this is equal to ZERO.
97 const TWO: Self;
98
99 /// The element in the ring given by `-ONE`.
100 ///
101 /// This is provided as a convenience as `NEG_ONE` occurs regularly in
102 /// the proving system. This also is slightly faster than computing
103 /// it via negation. Note that where possible `NEG_ONE` should be absorbed
104 /// into mathematical operations. For example `a - b` will be faster
105 /// than `a + NEG_ONE * b` and similarly `(-b)` is faster than `NEG_ONE * b`.
106 ///
107 /// If the field has characteristic 2 this is equal to ONE.
108 const NEG_ONE: Self;
109
110 /// Embed an element of the prime field `ℤ/p` into the ring `R`.
111 ///
112 /// Given any element `[r] ∈ ℤ/p`, represented by an integer `r` between `0` and `p - 1`
113 /// `from_prime_subfield([r])` will be equal to:
114 ///
115 /// `Self::ONE + ... + Self::ONE (r times)`
116 #[must_use]
117 fn from_prime_subfield(f: Self::PrimeSubfield) -> Self;
118
119 /// Return `Self::ONE` if `b` is `true` and `Self::ZERO` if `b` is `false`.
120 #[must_use]
121 #[inline(always)]
122 fn from_bool(b: bool) -> Self {
123 // Some rings might reimplement this to avoid the branch.
124 if b { Self::ONE } else { Self::ZERO }
125 }
126
127 from_integer_types!(
128 u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize
129 );
130
131 /// The elementary function `double(a) = 2*a`.
132 ///
133 /// This function should be preferred over calling `a + a` or `TWO * a` as a faster implementation may be available for some rings.
134 /// If the field has characteristic 2 then this returns 0.
135 #[must_use]
136 #[inline(always)]
137 fn double(&self) -> Self {
138 self.clone() + self.clone()
139 }
140
141 /// The elementary function `halve(a) = a/2`.
142 ///
143 /// # Panics
144 /// The function will panic if the field has characteristic 2.
145 #[must_use]
146 #[inline]
147 fn halve(&self) -> Self {
148 // This must be overwritten by PrimeField implementations as this definition
149 // is circular when PrimeSubfield = Self. It should also be overwritten by
150 // most rings to avoid the multiplication.
151 let half = Self::from_prime_subfield(Self::PrimeSubfield::ONE.halve());
152 self.clone() * half
153 }
154
155 /// The elementary function `square(a) = a^2`.
156 ///
157 /// This function should be preferred over calling `a * a`, as a faster implementation may be available for some rings.
158 #[must_use]
159 #[inline(always)]
160 fn square(&self) -> Self {
161 self.clone() * self.clone()
162 }
163
164 /// The elementary function `cube(a) = a^3`.
165 ///
166 /// This function should be preferred over calling `a * a * a`, as a faster implementation may be available for some rings.
167 #[must_use]
168 #[inline(always)]
169 fn cube(&self) -> Self {
170 self.square() * self.clone()
171 }
172
173 /// Computes the arithmetic generalization of boolean `xor`.
174 ///
175 /// For boolean inputs, `x ^ y = x + y - 2 xy`.
176 #[must_use]
177 #[inline(always)]
178 fn xor(&self, y: &Self) -> Self {
179 self.clone() + y.clone() - self.clone() * y.clone().double()
180 }
181
182 /// Computes the arithmetic generalization of a triple `xor`.
183 ///
184 /// For boolean inputs `x ^ y ^ z = x + y + z - 2(xy + xz + yz) + 4xyz`.
185 #[must_use]
186 #[inline(always)]
187 fn xor3(&self, y: &Self, z: &Self) -> Self {
188 self.xor(y).xor(z)
189 }
190
191 /// Computes the arithmetic generalization of `andnot`.
192 ///
193 /// For boolean inputs `(!x) & y = (1 - x)y`.
194 #[must_use]
195 #[inline(always)]
196 fn andn(&self, y: &Self) -> Self {
197 (Self::ONE - self.clone()) * y.clone()
198 }
199
200 /// The vanishing polynomial for boolean values: `x * (x - 1)`.
201 ///
202 /// This is a polynomial of degree `2` that evaluates to `0` if the input is `0` or `1`.
203 /// If our space is a field, then this will be nonzero on all other inputs.
204 #[must_use]
205 #[inline(always)]
206 fn bool_check(&self) -> Self {
207 // Note: We could delegate to `andn`, but to maintain backwards
208 // compatible AIR definitions, we stick with `x * (x - 1)` here.
209 self.clone() * (self.clone() - Self::ONE)
210 }
211
212 /// Exponentiation by a `u64` power.
213 ///
214 /// This uses the standard square and multiply approach.
215 /// For specific powers regularly used and known in advance,
216 /// this will be slower than custom addition chain exponentiation.
217 #[must_use]
218 #[inline]
219 fn exp_u64(&self, power: u64) -> Self {
220 let mut current = self.clone();
221 let mut product = Self::ONE;
222
223 for j in 0..bits_u64(power) {
224 if (power >> j) & 1 != 0 {
225 product *= current.clone();
226 }
227 current = current.square();
228 }
229 product
230 }
231
232 /// Exponentiation by a small constant power.
233 ///
234 /// For a collection of small values we implement custom multiplication chain circuits which can be faster than the
235 /// simpler square and multiply approach.
236 ///
237 /// For large values this defaults back to `self.exp_u64`.
238 #[must_use]
239 #[inline(always)]
240 fn exp_const_u64<const POWER: u64>(&self) -> Self {
241 match POWER {
242 0 => Self::ONE,
243 1 => self.clone(),
244 2 => self.square(),
245 3 => self.cube(),
246 4 => self.square().square(),
247 5 => self.square().square() * self.clone(),
248 6 => self.square().cube(),
249 7 => {
250 let x2 = self.square();
251 let x3 = x2.clone() * self.clone();
252 let x4 = x2.square();
253 x3 * x4
254 }
255 _ => self.exp_u64(POWER),
256 }
257 }
258
259 /// The elementary function `exp_power_of_2(a, power_log) = a^{2^power_log}`.
260 ///
261 /// Computed via repeated squaring.
262 #[must_use]
263 #[inline]
264 fn exp_power_of_2(&self, power_log: usize) -> Self {
265 let mut res = self.clone();
266 for _ in 0..power_log {
267 res = res.square();
268 }
269 res
270 }
271
272 /// The elementary function `mul_2exp_u64(a, exp) = a * 2^{exp}`.
273 ///
274 /// Here `2^{exp}` is computed using the square and multiply approach.
275 #[must_use]
276 #[inline]
277 fn mul_2exp_u64(&self, exp: u64) -> Self {
278 // Some rings might want to reimplement this to avoid the
279 // exponentiations (and potentially even the multiplication).
280 self.clone() * Self::TWO.exp_u64(exp)
281 }
282
283 /// Divide by a given power of two. `div_2exp_u64(a, exp) = a/2^exp`
284 ///
285 /// # Panics
286 /// The function will panic if the field has characteristic 2.
287 #[must_use]
288 #[inline]
289 fn div_2exp_u64(&self, exp: u64) -> Self {
290 // Some rings might want to reimplement this to avoid the
291 // exponentiations (and potentially even the multiplication).
292 self.clone() * Self::from_prime_subfield(Self::PrimeSubfield::ONE.halve().exp_u64(exp))
293 }
294
295 /// Construct an iterator which returns powers of `self`: `self^0, self^1, self^2, ...`.
296 #[must_use]
297 #[inline]
298 fn powers(&self) -> Powers<Self> {
299 self.shifted_powers(Self::ONE)
300 }
301
302 /// Construct an iterator which returns powers of `self` shifted by `start`: `start, start*self^1, start*self^2, ...`.
303 #[must_use]
304 #[inline]
305 fn shifted_powers(&self, start: Self) -> Powers<Self> {
306 Powers {
307 base: self.clone(),
308 current: start,
309 }
310 }
311
312 /// Compute the dot product of two vectors.
313 #[must_use]
314 #[inline]
315 fn dot_product<const N: usize>(u: &[Self; N], v: &[Self; N]) -> Self {
316 u.iter().zip(v).map(|(x, y)| x.clone() * y.clone()).sum()
317 }
318
319 /// Compute the sum of a slice of elements whose length is a compile time constant.
320 ///
321 /// The rust compiler doesn't realize that add is associative
322 /// so we help it out and minimize the dependency chains by hand.
323 /// Thus while this function has the same throughput as `input.iter().sum()`,
324 /// it will usually have much lower latency.
325 ///
326 /// # Panics
327 ///
328 /// May panic if the length of the input slice is not equal to `N`.
329 #[must_use]
330 #[inline]
331 fn sum_array<const N: usize>(input: &[Self]) -> Self {
332 // It looks a little strange but using a const parameter and an assert_eq! instead of
333 // using input.len() leads to a significant performance improvement.
334 // We could make this input &[Self; N] but that would require sticking .try_into().unwrap() everywhere.
335 // Checking godbolt, the compiler seems to unroll everything anyway.
336 assert_eq!(N, input.len());
337
338 // For `N <= 8` we implement a tree sum structure and for `N > 8` we break the input into
339 // chunks of `8`, perform a tree sum on each chunk and sum the results. The parameter `8`
340 // was determined experimentally by testing the speed of the poseidon2 internal layer computations.
341 // This is a useful benchmark as we have a mix of summations of size 15, 23 with other work in between.
342 // I only tested this on `AVX2` though so there might be a better value for other architectures.
343 match N {
344 0 => Self::ZERO,
345 1 => input[0].clone(),
346 2 => input[0].clone() + input[1].clone(),
347 3 => input[0].clone() + input[1].clone() + input[2].clone(),
348 4 => (input[0].clone() + input[1].clone()) + (input[2].clone() + input[3].clone()),
349 5 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<1>(&input[4..]),
350 6 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<2>(&input[4..]),
351 7 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<3>(&input[4..]),
352 8 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<4>(&input[4..]),
353 _ => {
354 // We know that N > 8 here so this saves an add over the usual
355 // initialisation of acc to Self::ZERO.
356 let mut acc = Self::sum_array::<8>(&input[..8]);
357 for i in (16..=N).step_by(8) {
358 acc += Self::sum_array::<8>(&input[(i - 8)..i]);
359 }
360 // This would be much cleaner if we could use const generic expressions but
361 // this will do for now.
362 match N & 7 {
363 0 => acc,
364 1 => acc + Self::sum_array::<1>(&input[(8 * (N / 8))..]),
365 2 => acc + Self::sum_array::<2>(&input[(8 * (N / 8))..]),
366 3 => acc + Self::sum_array::<3>(&input[(8 * (N / 8))..]),
367 4 => acc + Self::sum_array::<4>(&input[(8 * (N / 8))..]),
368 5 => acc + Self::sum_array::<5>(&input[(8 * (N / 8))..]),
369 6 => acc + Self::sum_array::<6>(&input[(8 * (N / 8))..]),
370 7 => acc + Self::sum_array::<7>(&input[(8 * (N / 8))..]),
371 _ => unreachable!(),
372 }
373 }
374 }
375 }
376
377 /// Allocates a vector of zero elements of length `len`. Many operating systems zero pages
378 /// before assigning them to a userspace process. In that case, our process should not need to
379 /// write zeros, which would be redundant. However, the compiler may not always recognize this.
380 ///
381 /// In particular, `vec![Self::ZERO; len]` appears to result in redundant userspace zeroing.
382 /// This is the default implementation, but implementers may wish to provide their own
383 /// implementation which transmutes something like `vec![0u32; len]`.
384 #[must_use]
385 #[inline]
386 fn zero_vec(len: usize) -> Vec<Self> {
387 vec![Self::ZERO; len]
388 }
389}
390
391/// A vector space `V` over `F` with a fixed basis. Fixing the basis allows elements of `V` to be
392/// converted to and from `DIMENSION` many elements of `F` which are interpreted as basis coefficients.
393///
394/// We usually expect `F` to be a field but do not enforce this and so allow it to be just a ring.
395/// This lets every ring implement `BasedVectorSpace<Self>` and is useful in a couple of other cases.
396///
397/// ## Safety
398/// We make no guarantees about consistency of the choice of basis across different versions of Plonky3.
399/// If this choice of basis changes, the behaviour of `BasedVectorSpace` will also change. Due to this,
400/// we recommend avoiding using this trait unless absolutely necessary.
401///
402/// ### Mathematical Description
403/// Given a vector space, `A` over `F`, a basis is a set of elements `B = {b_0, ..., b_{n-1}}`
404/// in `A` such that, given any element `a`, we can find a unique set of `n` elements of `F`,
405/// `f_0, ..., f_{n - 1}` satisfying `a = f_0 b_0 + ... + f_{n - 1} b_{n - 1}`. Thus the choice
406/// of `B` gives rise to a natural linear map between the vector space `A` and the canonical
407/// `n` dimensional vector space `F^n`.
408///
409/// This allows us to map between elements of `A` and arrays of `n` elements of `F`.
410/// Clearly this map depends entirely on the choice of basis `B` which may change
411/// across versions of Plonky3.
412///
413/// The situation is slightly more complicated in cases where `F` is not a field but boils down
414/// to an identical description once we enforce that `A` is a free module over `F`.
415pub trait BasedVectorSpace<F: PrimeCharacteristicRing>: Sized {
416 /// The dimension of the vector space, i.e. the number of elements in
417 /// its basis.
418 const DIMENSION: usize;
419
420 /// Fixes a basis for the algebra `A` and uses this to
421 /// map an element of `A` to a slice of `DIMENSION` `F` elements.
422 ///
423 /// # Safety
424 ///
425 /// The value produced by this function fundamentally depends
426 /// on the choice of basis. Care must be taken
427 /// to ensure portability if these values might ever be passed to
428 /// (or rederived within) another compilation environment where a
429 /// different basis might have been used.
430 #[must_use]
431 fn as_basis_coefficients_slice(&self) -> &[F];
432
433 /// Fixes a basis for the algebra `A` and uses this to
434 /// map `DIMENSION` `F` elements to an element of `A`.
435 ///
436 /// # Safety
437 ///
438 /// The value produced by this function fundamentally depends
439 /// on the choice of basis. Care must be taken
440 /// to ensure portability if these values might ever be passed to
441 /// (or rederived within) another compilation environment where a
442 /// different basis might have been used.
443 ///
444 /// Returns `None` if the length of the slice is different to `DIMENSION`.
445 #[must_use]
446 #[inline]
447 fn from_basis_coefficients_slice(slice: &[F]) -> Option<Self> {
448 Self::from_basis_coefficients_iter(slice.iter().cloned())
449 }
450
451 /// Fixes a basis for the algebra `A` and uses this to
452 /// map `DIMENSION` `F` elements to an element of `A`. Similar
453 /// to `core:array::from_fn`, the `DIMENSION` `F` elements are
454 /// given by `Fn(0), ..., Fn(DIMENSION - 1)` called in that order.
455 ///
456 /// # Safety
457 ///
458 /// The value produced by this function fundamentally depends
459 /// on the choice of basis. Care must be taken
460 /// to ensure portability if these values might ever be passed to
461 /// (or rederived within) another compilation environment where a
462 /// different basis might have been used.
463 #[must_use]
464 fn from_basis_coefficients_fn<Fn: FnMut(usize) -> F>(f: Fn) -> Self;
465
466 /// Fixes a basis for the algebra `A` and uses this to
467 /// map `DIMENSION` `F` elements to an element of `A`.
468 ///
469 /// # Safety
470 ///
471 /// The value produced by this function fundamentally depends
472 /// on the choice of basis. Care must be taken
473 /// to ensure portability if these values might ever be passed to
474 /// (or rederived within) another compilation environment where a
475 /// different basis might have been used.
476 ///
477 /// Returns `None` if the length of the iterator is different to `DIMENSION`.
478 #[must_use]
479 fn from_basis_coefficients_iter<I: ExactSizeIterator<Item = F>>(iter: I) -> Option<Self>;
480
481 /// Given a basis for the Algebra `A`, return the i'th basis element.
482 ///
483 /// # Safety
484 ///
485 /// The value produced by this function fundamentally depends
486 /// on the choice of basis. Care must be taken
487 /// to ensure portability if these values might ever be passed to
488 /// (or rederived within) another compilation environment where a
489 /// different basis might have been used.
490 ///
491 /// Returns `None` if `i` is greater than or equal to `DIMENSION`.
492 #[must_use]
493 #[inline]
494 fn ith_basis_element(i: usize) -> Option<Self> {
495 (i < Self::DIMENSION).then(|| Self::from_basis_coefficients_fn(|j| F::from_bool(i == j)))
496 }
497
498 /// Convert from a vector of `Self` to a vector of `F` by flattening the basis coefficients.
499 ///
500 /// Depending on the `BasedVectorSpace` this may be essentially a no-op and should certainly
501 /// be reimplemented in those cases.
502 ///
503 /// # Safety
504 ///
505 /// The value produced by this function fundamentally depends
506 /// on the choice of basis. Care must be taken
507 /// to ensure portability if these values might ever be passed to
508 /// (or rederived within) another compilation environment where a
509 /// different basis might have been used.
510 #[must_use]
511 #[inline]
512 fn flatten_to_base(vec: Vec<Self>) -> Vec<F> {
513 vec.into_iter()
514 .flat_map(|x| x.as_basis_coefficients_slice().to_vec())
515 .collect()
516 }
517
518 /// Convert from a vector of `F` to a vector of `Self` by combining the basis coefficients.
519 ///
520 /// Depending on the `BasedVectorSpace` this may be essentially a no-op and should certainly
521 /// be reimplemented in those cases.
522 ///
523 /// # Panics
524 /// This will panic if the length of `vec` is not a multiple of `Self::DIMENSION`.
525 ///
526 /// # Safety
527 ///
528 /// The value produced by this function fundamentally depends
529 /// on the choice of basis. Care must be taken
530 /// to ensure portability if these values might ever be passed to
531 /// (or rederived within) another compilation environment where a
532 /// different basis might have been used.
533 #[must_use]
534 #[inline]
535 fn reconstitute_from_base(vec: Vec<F>) -> Vec<Self>
536 where
537 F: Sync,
538 Self: Send,
539 {
540 assert_eq!(vec.len() % Self::DIMENSION, 0);
541
542 vec.par_chunks_exact(Self::DIMENSION)
543 .map(|chunk| {
544 Self::from_basis_coefficients_slice(chunk)
545 .expect("Chunk length not equal to dimension")
546 })
547 .collect()
548 }
549}
550
551impl<F: PrimeCharacteristicRing> BasedVectorSpace<F> for F {
552 const DIMENSION: usize = 1;
553
554 #[inline]
555 fn as_basis_coefficients_slice(&self) -> &[F] {
556 slice::from_ref(self)
557 }
558
559 #[inline]
560 fn from_basis_coefficients_fn<Fn: FnMut(usize) -> F>(mut f: Fn) -> Self {
561 f(0)
562 }
563
564 #[inline]
565 fn from_basis_coefficients_iter<I: ExactSizeIterator<Item = F>>(mut iter: I) -> Option<Self> {
566 (iter.len() == 1).then(|| iter.next().unwrap()) // Unwrap will not panic as we know the length is 1.
567 }
568
569 #[inline]
570 fn flatten_to_base(vec: Vec<Self>) -> Vec<F> {
571 vec
572 }
573
574 #[inline]
575 fn reconstitute_from_base(vec: Vec<F>) -> Vec<Self> {
576 vec
577 }
578}
579
580/// A ring implements `InjectiveMonomial<N>` if the algebraic function
581/// `f(x) = x^N` is an injective map on elements of the ring.
582///
583/// We do not enforce that this map be invertible as there are useful
584/// cases such as polynomials or symbolic expressions where no inverse exists.
585///
586/// However, if the ring is a field with order `q` or an array of such field elements,
587/// then `f(x) = x^N` will be injective if and only if it is invertible and so in
588/// such cases this monomial acts as a permutation. Moreover, this will occur
589/// exactly when `N` and `q - 1` are relatively prime i.e. `gcd(N, q - 1) = 1`.
590pub trait InjectiveMonomial<const N: u64>: PrimeCharacteristicRing {
591 /// Compute `x -> x^n` for a given `n > 1` such that this
592 /// map is injective.
593 #[must_use]
594 #[inline]
595 fn injective_exp_n(&self) -> Self {
596 self.exp_const_u64::<N>()
597 }
598}
599
600/// A ring implements `PermutationMonomial<N>` if the algebraic function
601/// `f(x) = x^N` is invertible and thus acts as a permutation on elements of the ring.
602///
603/// In all cases we care about, this means that we can find another integer `K` such
604/// that `x = x^{NK}` for all elements of our ring.
605pub trait PermutationMonomial<const N: u64>: InjectiveMonomial<N> {
606 /// Compute `x -> x^K` for a given `K > 1` such that
607 /// `x^{NK} = x` for all elements `x`.
608 #[must_use]
609 fn injective_exp_root_n(&self) -> Self;
610}
611
612/// A ring `R` implements `Algebra<F>` if there is an injective homomorphism
613/// from `F` into `R`; in particular only `F::ZERO` maps to `R::ZERO`.
614///
615/// For the most part, we will usually expect `F` to be a field but there
616/// are a few cases where it is handy to allow it to just be a ring. In
617/// particular, every ring naturally implements `Algebra<Self>`.
618///
619/// ### Mathematical Description
620///
621/// Let `x` and `y` denote arbitrary elements of `F`. Then
622/// we require that our map `from` has the properties:
623/// - Preserves Identity: `from(F::ONE) = R::ONE`
624/// - Commutes with Addition: `from(x + y) = from(x) + from(y)`
625/// - Commutes with Multiplication: `from(x * y) = from(x) * from(y)`
626///
627/// Such maps are known as ring homomorphisms and are injective if the
628/// only element which maps to `R::ZERO` is `F::ZERO`.
629///
630/// The existence of this map makes `R` into an `F`-module and hence an `F`-algebra.
631/// If, additionally, `R` is a field, then this makes `R` a field extension of `F`.
632pub trait Algebra<F>:
633 PrimeCharacteristicRing
634 + From<F>
635 + Add<F, Output = Self>
636 + AddAssign<F>
637 + Sub<F, Output = Self>
638 + SubAssign<F>
639 + Mul<F, Output = Self>
640 + MulAssign<F>
641{
642}
643
644// Every ring is an algebra over itself.
645impl<R: PrimeCharacteristicRing> Algebra<R> for R {}
646
647/// A collection of methods designed to help hash field elements.
648///
649/// Most fields will want to reimplement many/all of these methods as the default implementations
650/// are slow and involve converting to/from byte representations.
651pub trait RawDataSerializable: Sized {
652 /// The number of bytes which this field element occupies in memory.
653 /// Must be equal to the length of self.into_bytes().
654 const NUM_BYTES: usize;
655
656 /// Convert a field element into a collection of bytes.
657 #[must_use]
658 fn into_bytes(self) -> impl IntoIterator<Item = u8>;
659
660 /// Convert an iterator of field elements into an iterator of bytes.
661 #[must_use]
662 fn into_byte_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u8> {
663 input.into_iter().flat_map(|elem| elem.into_bytes())
664 }
665
666 /// Convert an iterator of field elements into an iterator of u32s.
667 ///
668 /// If `NUM_BYTES` does not divide `4`, multiple `F`s may be packed together to make a single `u32`. Furthermore,
669 /// if `NUM_BYTES * input.len()` does not divide `4`, the final `u32` will involve padding bytes which are set to `0`.
670 #[must_use]
671 fn into_u32_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u32> {
672 let bytes = Self::into_byte_stream(input);
673 iter_array_chunks_padded(bytes, 0).map(u32::from_le_bytes)
674 }
675
676 /// Convert an iterator of field elements into an iterator of u64s.
677 ///
678 /// If `NUM_BYTES` does not divide `8`, multiple `F`s may be packed together to make a single `u64`. Furthermore,
679 /// if `NUM_BYTES * input.len()` does not divide `8`, the final `u64` will involve padding bytes which are set to `0`.
680 #[must_use]
681 fn into_u64_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u64> {
682 let bytes = Self::into_byte_stream(input);
683 iter_array_chunks_padded(bytes, 0).map(u64::from_le_bytes)
684 }
685
686 /// Convert an iterator of field element arrays into an iterator of byte arrays.
687 ///
688 /// Converts an element `[F; N]` into the byte array `[[u8; N]; NUM_BYTES]`. This is
689 /// intended for use with vectorized hash functions which use vector operations
690 /// to compute several hashes in parallel.
691 #[must_use]
692 fn into_parallel_byte_streams<const N: usize>(
693 input: impl IntoIterator<Item = [Self; N]>,
694 ) -> impl IntoIterator<Item = [u8; N]> {
695 input.into_iter().flat_map(|vector| {
696 let bytes = vector.map(|elem| elem.into_bytes().into_iter().collect::<Vec<_>>());
697 (0..Self::NUM_BYTES).map(move |i| array::from_fn(|j| bytes[j][i]))
698 })
699 }
700
701 /// Convert an iterator of field element arrays into an iterator of u32 arrays.
702 ///
703 /// Converts an element `[F; N]` into the u32 array `[[u32; N]; NUM_BYTES/4]`. This is
704 /// intended for use with vectorized hash functions which use vector operations
705 /// to compute several hashes in parallel.
706 ///
707 /// This function is guaranteed to be equivalent to starting with `Iterator<[F; N]>` performing a transpose
708 /// operation to get `[Iterator<F>; N]`, calling `into_u32_stream` on each element to get `[Iterator<u32>; N]` and then
709 /// performing another transpose operation to get `Iterator<[u32; N]>`.
710 ///
711 /// If `NUM_BYTES` does not divide `4`, multiple `[F; N]`s may be packed together to make a single `[u32; N]`. Furthermore,
712 /// if `NUM_BYTES * input.len()` does not divide `4`, the final `[u32; N]` will involve padding bytes which are set to `0`.
713 #[must_use]
714 fn into_parallel_u32_streams<const N: usize>(
715 input: impl IntoIterator<Item = [Self; N]>,
716 ) -> impl IntoIterator<Item = [u32; N]> {
717 let bytes = Self::into_parallel_byte_streams(input);
718 iter_array_chunks_padded(bytes, [0; N]).map(|byte_array: [[u8; N]; 4]| {
719 array::from_fn(|i| u32::from_le_bytes(array::from_fn(|j| byte_array[j][i])))
720 })
721 }
722
723 /// Convert an iterator of field element arrays into an iterator of u64 arrays.
724 ///
725 /// Converts an element `[F; N]` into the u64 array `[[u64; N]; NUM_BYTES/8]`. This is
726 /// intended for use with vectorized hash functions which use vector operations
727 /// to compute several hashes in parallel.
728 ///
729 /// This function is guaranteed to be equivalent to starting with `Iterator<[F; N]>` performing a transpose
730 /// operation to get `[Iterator<F>; N]`, calling `into_u64_stream` on each element to get `[Iterator<u64>; N]` and then
731 /// performing another transpose operation to get `Iterator<[u64; N]>`.
732 ///
733 /// If `NUM_BYTES` does not divide `8`, multiple `[F; N]`s may be packed together to make a single `[u64; N]`. Furthermore,
734 /// if `NUM_BYTES * input.len()` does not divide `8`, the final `[u64; N]` will involve padding bytes which are set to `0`.
735 #[must_use]
736 fn into_parallel_u64_streams<const N: usize>(
737 input: impl IntoIterator<Item = [Self; N]>,
738 ) -> impl IntoIterator<Item = [u64; N]> {
739 let bytes = Self::into_parallel_byte_streams(input);
740 iter_array_chunks_padded(bytes, [0; N]).map(|byte_array: [[u8; N]; 8]| {
741 array::from_fn(|i| u64::from_le_bytes(array::from_fn(|j| byte_array[j][i])))
742 })
743 }
744}
745
746/// A field `F`. This permits both modular fields `ℤ/p` along with their field extensions.
747///
748/// A ring is a field if every element `x` has a unique multiplicative inverse `x^{-1}`
749/// which satisfies `x * x^{-1} = F::ONE`.
750pub trait Field:
751 Algebra<Self>
752 + RawDataSerializable
753 + Packable
754 + 'static
755 + Copy
756 + Div<Self, Output = Self>
757 + DivAssign
758 + Add<Self::Packing, Output = Self::Packing>
759 + Sub<Self::Packing, Output = Self::Packing>
760 + Mul<Self::Packing, Output = Self::Packing>
761 + Eq
762 + Hash
763 + Send
764 + Sync
765 + Display
766 + Serialize
767 + DeserializeOwned
768{
769 type Packing: PackedField<Scalar = Self>;
770
771 /// A generator of this field's multiplicative group.
772 const GENERATOR: Self;
773
774 /// Check if the given field element is equal to the unique additive identity (ZERO).
775 #[must_use]
776 #[inline]
777 fn is_zero(&self) -> bool {
778 *self == Self::ZERO
779 }
780
781 /// Check if the given field element is equal to the unique multiplicative identity (ONE).
782 #[must_use]
783 #[inline]
784 fn is_one(&self) -> bool {
785 *self == Self::ONE
786 }
787
788 /// The multiplicative inverse of this field element, if it exists.
789 ///
790 /// NOTE: The inverse of `0` is undefined and will return `None`.
791 #[must_use]
792 fn try_inverse(&self) -> Option<Self>;
793
794 /// The multiplicative inverse of this field element.
795 ///
796 /// # Panics
797 /// The function will panic if the field element is `0`.
798 /// Use try_inverse if you want to handle this case.
799 #[must_use]
800 fn inverse(&self) -> Self {
801 self.try_inverse().expect("Tried to invert zero")
802 }
803
804 /// Add two slices of field elements together, returning the result in the first slice.
805 ///
806 /// Makes use of packing to speed up the addition.
807 ///
808 /// This is optimal for cases where the two slices are small to medium length. E.g. between
809 /// `F::Packing::WIDTH` and roughly however many elements fit in a cache line.
810 ///
811 /// For larger slices, it's likely worthwhile to use parallelization before calling this.
812 /// Similarly if you need to add a large number of slices together, it's best to
813 /// break them into small chunks and call this on the smaller chunks.
814 ///
815 /// # Panics
816 /// The function will panic if the lengths of the two slices are not equal.
817 #[inline]
818 fn add_slices(slice_1: &mut [Self], slice_2: &[Self]) {
819 let (shorts_1, suffix_1) = Self::Packing::pack_slice_with_suffix_mut(slice_1);
820 let (shorts_2, suffix_2) = Self::Packing::pack_slice_with_suffix(slice_2);
821 debug_assert_eq!(shorts_1.len(), shorts_2.len());
822 debug_assert_eq!(suffix_1.len(), suffix_2.len());
823 for (x_1, &x_2) in shorts_1.iter_mut().zip(shorts_2) {
824 *x_1 += x_2;
825 }
826 for (x_1, &x_2) in suffix_1.iter_mut().zip(suffix_2) {
827 *x_1 += x_2;
828 }
829 }
830
831 /// The number of elements in the field.
832 ///
833 /// This will either be prime if the field is a PrimeField or a power of a
834 /// prime if the field is an extension field.
835 #[must_use]
836 fn order() -> BigUint;
837
838 /// The number of bits required to define an element of this field.
839 ///
840 /// Usually due to storage and practical reasons the memory size of
841 /// a field element will be a little larger than bits().
842 #[must_use]
843 #[inline]
844 fn bits() -> usize {
845 Self::order().bits() as usize
846 }
847}
848
849/// A field isomorphic to `ℤ/p` for some prime `p`.
850///
851/// There is a natural map from `ℤ` to `ℤ/p` which sends an integer `r` to its conjugacy class `[r]`.
852/// Canonically, each conjugacy class `[r]` can be represented by the unique integer `s` in `[0, p - 1)`
853/// satisfying `s = r mod p`. This however is often not the most convenient computational representation
854/// and so internal representations of field elements might differ from this and may change over time.
855pub trait PrimeField:
856 Field
857 + Ord
858 + QuotientMap<u8>
859 + QuotientMap<u16>
860 + QuotientMap<u32>
861 + QuotientMap<u64>
862 + QuotientMap<u128>
863 + QuotientMap<usize>
864 + QuotientMap<i8>
865 + QuotientMap<i16>
866 + QuotientMap<i32>
867 + QuotientMap<i64>
868 + QuotientMap<i128>
869 + QuotientMap<isize>
870{
871 /// Return the representative of `value` in canonical form
872 /// which lies in the range `0 <= x < self.order()`.
873 #[must_use]
874 fn as_canonical_biguint(&self) -> BigUint;
875}
876
877/// A prime field `ℤ/p` with order, `p < 2^64`.
878pub trait PrimeField64: PrimeField {
879 const ORDER_U64: u64;
880
881 /// Return the representative of `value` in canonical form
882 /// which lies in the range `0 <= x < ORDER_U64`.
883 #[must_use]
884 fn as_canonical_u64(&self) -> u64;
885
886 /// Convert a field element to a `u64` such that any two field elements
887 /// are converted to the same `u64` if and only if they represent the same value.
888 ///
889 /// This will be the fastest way to convert a field element to a `u64` and
890 /// is intended for use in hashing. It will also be consistent across different targets.
891 #[must_use]
892 #[inline(always)]
893 fn to_unique_u64(&self) -> u64 {
894 // A simple default which is optimal for some fields.
895 self.as_canonical_u64()
896 }
897}
898
899/// A prime field `ℤ/p` with order `p < 2^32`.
900pub trait PrimeField32: PrimeField64 {
901 const ORDER_U32: u32;
902
903 /// Return the representative of `value` in canonical form
904 /// which lies in the range `0 <= x < ORDER_U64`.
905 #[must_use]
906 fn as_canonical_u32(&self) -> u32;
907
908 /// Convert a field element to a `u32` such that any two field elements
909 /// are converted to the same `u32` if and only if they represent the same value.
910 ///
911 /// This will be the fastest way to convert a field element to a `u32` and
912 /// is intended for use in hashing. It will also be consistent across different targets.
913 #[must_use]
914 #[inline(always)]
915 fn to_unique_u32(&self) -> u32 {
916 // A simple default which is optimal for some fields.
917 self.as_canonical_u32()
918 }
919}
920
921/// A field `EF` which is also an algebra over a field `F`.
922///
923/// This provides a couple of convenience methods on top of the
924/// standard methods provided by `Field`, `Algebra<F>` and `BasedVectorSpace<F>`.
925///
926/// It also provides a type which handles packed vectors of extension field elements.
927pub trait ExtensionField<Base: Field>: Field + Algebra<Base> + BasedVectorSpace<Base> {
928 type ExtensionPacking: PackedFieldExtension<Base, Self> + 'static + Copy + Send + Sync;
929
930 /// Determine if the given element lies in the base field.
931 #[must_use]
932 fn is_in_basefield(&self) -> bool;
933
934 /// If the element lies in the base field project it down.
935 /// Otherwise return None.
936 #[must_use]
937 fn as_base(&self) -> Option<Base>;
938}
939
940// Every field is trivially a one dimensional extension over itself.
941impl<F: Field> ExtensionField<F> for F {
942 type ExtensionPacking = F::Packing;
943
944 #[inline]
945 fn is_in_basefield(&self) -> bool {
946 true
947 }
948
949 #[inline]
950 fn as_base(&self) -> Option<F> {
951 Some(*self)
952 }
953}
954
955/// A field which supplies information like the two-adicity of its multiplicative group, and methods
956/// for obtaining two-adic generators.
957pub trait TwoAdicField: Field {
958 /// The number of factors of two in this field's multiplicative group.
959 const TWO_ADICITY: usize;
960
961 /// Returns a generator of the multiplicative group of order `2^bits`.
962 /// Assumes `bits <= TWO_ADICITY`, otherwise the result is undefined.
963 #[must_use]
964 fn two_adic_generator(bits: usize) -> Self;
965}
966
967/// An iterator which returns the powers of a base element `b` shifted by current `c`: `c, c * b, c * b^2, ...`.
968#[derive(Clone, Debug)]
969pub struct Powers<R: PrimeCharacteristicRing> {
970 pub base: R,
971 pub current: R,
972}
973
974impl<R: PrimeCharacteristicRing> Iterator for Powers<R> {
975 type Item = R;
976
977 fn next(&mut self) -> Option<R> {
978 let result = self.current.clone();
979 self.current *= self.base.clone();
980 Some(result)
981 }
982}
983
984impl<R: PrimeCharacteristicRing> Powers<R> {
985 /// Returns an iterator yielding the first `n` powers.
986 #[inline]
987 #[must_use]
988 pub const fn take(self, n: usize) -> BoundedPowers<R> {
989 BoundedPowers { iter: self, n }
990 }
991
992 /// Fills `slice` with the next `slice.len()` powers yielded by the iterator.
993 #[inline]
994 pub fn fill(self, slice: &mut [R]) {
995 slice
996 .iter_mut()
997 .zip(self)
998 .for_each(|(out, next)| *out = next);
999 }
1000
1001 /// Wrapper for `self.take(n).collect()`.
1002 #[inline]
1003 #[must_use]
1004 pub fn collect_n(self, n: usize) -> Vec<R> {
1005 self.take(n).collect()
1006 }
1007}
1008
1009impl<F: Field> BoundedPowers<F> {
1010 /// Collect exactly `num_powers` ascending powers of `self.base`, starting at `self.current`.
1011 ///
1012 /// # Details
1013 ///
1014 /// The computation is split evenly amongst available threads, and each chunk is computed
1015 /// using packed fields.
1016 ///
1017 /// # Performance
1018 ///
1019 /// Enable the `parallel` feature to enable parallelization.
1020 #[must_use]
1021 pub fn collect(self) -> Vec<F> {
1022 let num_powers = self.n;
1023
1024 // When num_powers is small, fallback to serial computation
1025 if num_powers < 16 {
1026 return self.take(num_powers).collect();
1027 }
1028
1029 // Allocate buffer storing packed powers, containing at least `num_powers` scalars.
1030 let width = F::Packing::WIDTH;
1031 let num_packed = num_powers.div_ceil(width);
1032 let mut points_packed = F::Packing::zero_vec(num_packed);
1033
1034 // Split computation evenly among threads
1035 let num_threads = current_num_threads().max(1);
1036 let chunk_size = num_packed.div_ceil(num_threads);
1037
1038 // Precompute base for each chunk.
1039 let base = self.iter.base;
1040 let chunk_base = base.exp_u64((chunk_size * width) as u64);
1041 let shift = self.iter.current;
1042
1043 points_packed
1044 .par_chunks_mut(chunk_size)
1045 .enumerate()
1046 .for_each(|(chunk_idx, chunk_slice)| {
1047 // First power in this chunk
1048 let chunk_start = shift * chunk_base.exp_u64(chunk_idx as u64);
1049
1050 // Fill the chunk with packed powers.
1051 F::Packing::packed_shifted_powers(base, chunk_start).fill(chunk_slice);
1052 });
1053
1054 // return the number of requested points, discarding the unused packed powers
1055 // SAFETY: size_of::<F::Packing> always divides size_of::<F::Packing>.
1056 let mut points = unsafe { flatten_to_base(points_packed) };
1057 points.truncate(num_powers);
1058 points
1059 }
1060}
1061
1062/// Same as [`Powers`], but returns a bounded number of powers.
1063#[derive(Clone, Debug)]
1064pub struct BoundedPowers<R: PrimeCharacteristicRing> {
1065 iter: Powers<R>,
1066 n: usize,
1067}
1068
1069impl<R: PrimeCharacteristicRing> Iterator for BoundedPowers<R> {
1070 type Item = R;
1071
1072 fn next(&mut self) -> Option<R> {
1073 (self.n != 0).then(|| {
1074 self.n -= 1;
1075 self.iter.next().unwrap()
1076 })
1077 }
1078}