p3_field/
field.rs

1use alloc::vec;
2use alloc::vec::Vec;
3use core::fmt::{Debug, Display};
4use core::hash::Hash;
5use core::iter::{Product, Sum};
6use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
7use core::{array, slice};
8
9use num_bigint::BigUint;
10use p3_maybe_rayon::prelude::*;
11use p3_util::{flatten_to_base, iter_array_chunks_padded};
12use serde::Serialize;
13use serde::de::DeserializeOwned;
14
15use crate::exponentiation::bits_u64;
16use crate::integers::{QuotientMap, from_integer_types};
17use crate::packed::PackedField;
18use crate::{Packable, PackedFieldExtension, PackedValue};
19
20/// A commutative ring, `R`, with prime characteristic, `p`.
21///
22/// This permits elements like:
23/// - A single finite field element.
24/// - A symbolic expression which would evaluate to a field element.
25/// - An array of finite field elements.
26/// - A polynomial with coefficients in a finite field.
27///
28/// ### Mathematical Description
29///
30/// Mathematically, a commutative ring is a set of objects which supports an addition-like
31/// like operation, `+`, and a multiplication-like operation `*`.
32///
33/// Let `x, y, z` denote arbitrary elements of the set.
34///
35/// Then, an operation is addition-like if it satisfies the following properties:
36/// - Commutativity => `x + y = y + x`
37/// - Associativity => `x + (y + z) = (x + y) + z`
38/// - Unit => There exists an identity element `ZERO` satisfying `x + ZERO = x`.
39/// - Inverses => For every `x` there exists a unique inverse `(-x)` satisfying `x + (-x) = ZERO`
40///
41/// Similarly, an operation is multiplication-like if it satisfies the following properties:
42/// - Commutativity => `x * y = y * x`
43/// - Associativity => `x * (y * z) = (x * y) * z`
44/// - Unit => There exists an identity element `ONE` satisfying `x * ONE = x`.
45/// - Distributivity => The two operations `+` and `*` must together satisfy `x * (y + z) = (x * y) + (x * z)`
46///
47/// Unlike in the addition case, we do not require inverses to exist with respect to `*`.
48///
49/// The simplest examples of commutative rings are the integers (`ℤ`), and the integers mod `N` (`ℤ/N`).
50///
51/// The characteristic of a ring is the smallest positive integer `r` such that `0 = r . 1 = 1 + 1 + ... + 1 (r times)`.
52/// For example, the characteristic of the modulo ring `ℤ/N` is `N`.
53///
54/// Rings with prime characteristic are particularly special due to their close relationship with finite fields.
55pub trait PrimeCharacteristicRing:
56    Sized
57    + Default
58    + Clone
59    + Add<Output = Self>
60    + AddAssign
61    + Sub<Output = Self>
62    + SubAssign
63    + Neg<Output = Self>
64    + Mul<Output = Self>
65    + MulAssign
66    + Sum
67    + Product
68    + Debug
69{
70    /// The field `ℤ/p` where the characteristic of this ring is p.
71    type PrimeSubfield: PrimeField;
72
73    /// The additive identity of the ring.
74    ///
75    /// For every element `a` in the ring we require the following properties:
76    ///
77    /// `a + ZERO = ZERO + a = a,`
78    ///
79    /// `a + (-a) = (-a) + a = ZERO.`
80    const ZERO: Self;
81
82    /// The multiplicative identity of the ring.
83    ///
84    /// For every element `a` in the ring we require the following property:
85    ///
86    /// `a*ONE = ONE*a = a.`
87    const ONE: Self;
88
89    /// The element in the ring given by `ONE + ONE`.
90    ///
91    /// This is provided as a convenience as `TWO` occurs regularly in
92    /// the proving system. This also is slightly faster than computing
93    /// it via addition. Note that multiplication by `TWO` is discouraged.
94    /// Instead of `a * TWO` use `a.double()` which will be faster.
95    ///
96    /// If the field has characteristic 2 this is equal to ZERO.
97    const TWO: Self;
98
99    /// The element in the ring given by `-ONE`.
100    ///
101    /// This is provided as a convenience as `NEG_ONE` occurs regularly in
102    /// the proving system. This also is slightly faster than computing
103    /// it via negation. Note that where possible `NEG_ONE` should be absorbed
104    /// into mathematical operations. For example `a - b` will be faster
105    /// than `a + NEG_ONE * b` and similarly `(-b)` is faster than `NEG_ONE * b`.
106    ///
107    /// If the field has characteristic 2 this is equal to ONE.
108    const NEG_ONE: Self;
109
110    /// Embed an element of the prime field `ℤ/p` into the ring `R`.
111    ///
112    /// Given any element `[r] ∈ ℤ/p`, represented by an integer `r` between `0` and `p - 1`
113    /// `from_prime_subfield([r])` will be equal to:
114    ///
115    /// `Self::ONE + ... + Self::ONE (r times)`
116    #[must_use]
117    fn from_prime_subfield(f: Self::PrimeSubfield) -> Self;
118
119    /// Return `Self::ONE` if `b` is `true` and `Self::ZERO` if `b` is `false`.
120    #[must_use]
121    #[inline(always)]
122    fn from_bool(b: bool) -> Self {
123        // Some rings might reimplement this to avoid the branch.
124        if b { Self::ONE } else { Self::ZERO }
125    }
126
127    from_integer_types!(
128        u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize
129    );
130
131    /// The elementary function `double(a) = 2*a`.
132    ///
133    /// This function should be preferred over calling `a + a` or `TWO * a` as a faster implementation may be available for some rings.
134    /// If the field has characteristic 2 then this returns 0.
135    #[must_use]
136    #[inline(always)]
137    fn double(&self) -> Self {
138        self.clone() + self.clone()
139    }
140
141    /// The elementary function `halve(a) = a/2`.
142    ///
143    /// # Panics
144    /// The function will panic if the field has characteristic 2.
145    #[must_use]
146    #[inline]
147    fn halve(&self) -> Self {
148        // This must be overwritten by PrimeField implementations as this definition
149        // is circular when PrimeSubfield = Self. It should also be overwritten by
150        // most rings to avoid the multiplication.
151        let half = Self::from_prime_subfield(Self::PrimeSubfield::ONE.halve());
152        self.clone() * half
153    }
154
155    /// The elementary function `square(a) = a^2`.
156    ///
157    /// This function should be preferred over calling `a * a`, as a faster implementation may be available for some rings.
158    #[must_use]
159    #[inline(always)]
160    fn square(&self) -> Self {
161        self.clone() * self.clone()
162    }
163
164    /// The elementary function `cube(a) = a^3`.
165    ///
166    /// This function should be preferred over calling `a * a * a`, as a faster implementation may be available for some rings.
167    #[must_use]
168    #[inline(always)]
169    fn cube(&self) -> Self {
170        self.square() * self.clone()
171    }
172
173    /// Computes the arithmetic generalization of boolean `xor`.
174    ///
175    /// For boolean inputs, `x ^ y = x + y - 2 xy`.
176    #[must_use]
177    #[inline(always)]
178    fn xor(&self, y: &Self) -> Self {
179        self.clone() + y.clone() - self.clone() * y.clone().double()
180    }
181
182    /// Computes the arithmetic generalization of a triple `xor`.
183    ///
184    /// For boolean inputs `x ^ y ^ z = x + y + z - 2(xy + xz + yz) + 4xyz`.
185    #[must_use]
186    #[inline(always)]
187    fn xor3(&self, y: &Self, z: &Self) -> Self {
188        self.xor(y).xor(z)
189    }
190
191    /// Computes the arithmetic generalization of `andnot`.
192    ///
193    /// For boolean inputs `(!x) & y = (1 - x)y`.
194    #[must_use]
195    #[inline(always)]
196    fn andn(&self, y: &Self) -> Self {
197        (Self::ONE - self.clone()) * y.clone()
198    }
199
200    /// The vanishing polynomial for boolean values: `x * (1 - x)`.
201    ///
202    /// This is a polynomial of degree `2` that evaluates to `0` if the input is `0` or `1`.
203    /// If our space is a field, then this will be nonzero on all other inputs.
204    #[must_use]
205    #[inline(always)]
206    fn bool_check(&self) -> Self {
207        // We use `x * (1 - x)` instead of `x * (x - 1)` as this lets us delegate to the `andn` function.
208        self.andn(self)
209    }
210
211    /// Exponentiation by a `u64` power.
212    ///
213    /// This uses the standard square and multiply approach.
214    /// For specific powers regularly used and known in advance,
215    /// this will be slower than custom addition chain exponentiation.
216    #[must_use]
217    #[inline]
218    fn exp_u64(&self, power: u64) -> Self {
219        let mut current = self.clone();
220        let mut product = Self::ONE;
221
222        for j in 0..bits_u64(power) {
223            if (power >> j) & 1 != 0 {
224                product *= current.clone();
225            }
226            current = current.square();
227        }
228        product
229    }
230
231    /// Exponentiation by a small constant power.
232    ///
233    /// For a collection of small values we implement custom multiplication chain circuits which can be faster than the
234    /// simpler square and multiply approach.
235    ///
236    /// For large values this defaults back to `self.exp_u64`.
237    #[must_use]
238    #[inline(always)]
239    fn exp_const_u64<const POWER: u64>(&self) -> Self {
240        match POWER {
241            0 => Self::ONE,
242            1 => self.clone(),
243            2 => self.square(),
244            3 => self.cube(),
245            4 => self.square().square(),
246            5 => self.square().square() * self.clone(),
247            6 => self.square().cube(),
248            7 => {
249                let x2 = self.square();
250                let x3 = x2.clone() * self.clone();
251                let x4 = x2.square();
252                x3 * x4
253            }
254            _ => self.exp_u64(POWER),
255        }
256    }
257
258    /// The elementary function `exp_power_of_2(a, power_log) = a^{2^power_log}`.
259    ///
260    /// Computed via repeated squaring.
261    #[must_use]
262    #[inline]
263    fn exp_power_of_2(&self, power_log: usize) -> Self {
264        let mut res = self.clone();
265        for _ in 0..power_log {
266            res = res.square();
267        }
268        res
269    }
270
271    /// The elementary function `mul_2exp_u64(a, exp) = a * 2^{exp}`.
272    ///
273    /// Here `2^{exp}` is computed using the square and multiply approach.
274    #[must_use]
275    #[inline]
276    fn mul_2exp_u64(&self, exp: u64) -> Self {
277        // Some rings might want to reimplement this to avoid the
278        // exponentiations (and potentially even the multiplication).
279        self.clone() * Self::TWO.exp_u64(exp)
280    }
281
282    /// Divide by a given power of two. `div_2exp_u64(a, exp) = a/2^exp`
283    ///
284    /// # Panics
285    /// The function will panic if the field has characteristic 2.
286    #[must_use]
287    #[inline]
288    fn div_2exp_u64(&self, exp: u64) -> Self {
289        // Some rings might want to reimplement this to avoid the
290        // exponentiations (and potentially even the multiplication).
291        self.clone() * Self::from_prime_subfield(Self::PrimeSubfield::ONE.halve().exp_u64(exp))
292    }
293
294    /// Construct an iterator which returns powers of `self`: `self^0, self^1, self^2, ...`.
295    #[must_use]
296    #[inline]
297    fn powers(&self) -> Powers<Self> {
298        self.shifted_powers(Self::ONE)
299    }
300
301    /// Construct an iterator which returns powers of `self` shifted by `start`: `start, start*self^1, start*self^2, ...`.
302    #[must_use]
303    #[inline]
304    fn shifted_powers(&self, start: Self) -> Powers<Self> {
305        Powers {
306            base: self.clone(),
307            current: start,
308        }
309    }
310
311    /// Compute the dot product of two vectors.
312    #[must_use]
313    #[inline]
314    fn dot_product<const N: usize>(u: &[Self; N], v: &[Self; N]) -> Self {
315        u.iter().zip(v).map(|(x, y)| x.clone() * y.clone()).sum()
316    }
317
318    /// Compute the sum of a slice of elements whose length is a compile time constant.
319    ///
320    /// The rust compiler doesn't realize that add is associative
321    /// so we help it out and minimize the dependency chains by hand.
322    /// Thus while this function has the same throughput as `input.iter().sum()`,
323    /// it will usually have much lower latency.
324    ///
325    /// # Panics
326    ///
327    /// May panic if the length of the input slice is not equal to `N`.
328    #[must_use]
329    #[inline]
330    fn sum_array<const N: usize>(input: &[Self]) -> Self {
331        // It looks a little strange but using a const parameter and an assert_eq! instead of
332        // using input.len() leads to a significant performance improvement.
333        // We could make this input &[Self; N] but that would require sticking .try_into().unwrap() everywhere.
334        // Checking godbolt, the compiler seems to unroll everything anyway.
335        assert_eq!(N, input.len());
336
337        // For `N <= 8` we implement a tree sum structure and for `N > 8` we break the input into
338        // chunks of `8`, perform a tree sum on each chunk and sum the results. The parameter `8`
339        // was determined experimentally by testing the speed of the poseidon2 internal layer computations.
340        // This is a useful benchmark as we have a mix of summations of size 15, 23 with other work in between.
341        // I only tested this on `AVX2` though so there might be a better value for other architectures.
342        match N {
343            0 => Self::ZERO,
344            1 => input[0].clone(),
345            2 => input[0].clone() + input[1].clone(),
346            3 => input[0].clone() + input[1].clone() + input[2].clone(),
347            4 => (input[0].clone() + input[1].clone()) + (input[2].clone() + input[3].clone()),
348            5 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<1>(&input[4..]),
349            6 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<2>(&input[4..]),
350            7 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<3>(&input[4..]),
351            8 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<4>(&input[4..]),
352            _ => {
353                // We know that N > 8 here so this saves an add over the usual
354                // initialisation of acc to Self::ZERO.
355                let mut acc = Self::sum_array::<8>(&input[..8]);
356                for i in (16..=N).step_by(8) {
357                    acc += Self::sum_array::<8>(&input[(i - 8)..i]);
358                }
359                // This would be much cleaner if we could use const generic expressions but
360                // this will do for now.
361                match N & 7 {
362                    0 => acc,
363                    1 => acc + Self::sum_array::<1>(&input[(8 * (N / 8))..]),
364                    2 => acc + Self::sum_array::<2>(&input[(8 * (N / 8))..]),
365                    3 => acc + Self::sum_array::<3>(&input[(8 * (N / 8))..]),
366                    4 => acc + Self::sum_array::<4>(&input[(8 * (N / 8))..]),
367                    5 => acc + Self::sum_array::<5>(&input[(8 * (N / 8))..]),
368                    6 => acc + Self::sum_array::<6>(&input[(8 * (N / 8))..]),
369                    7 => acc + Self::sum_array::<7>(&input[(8 * (N / 8))..]),
370                    _ => unreachable!(),
371                }
372            }
373        }
374    }
375
376    /// Allocates a vector of zero elements of length `len`. Many operating systems zero pages
377    /// before assigning them to a userspace process. In that case, our process should not need to
378    /// write zeros, which would be redundant. However, the compiler may not always recognize this.
379    ///
380    /// In particular, `vec![Self::ZERO; len]` appears to result in redundant userspace zeroing.
381    /// This is the default implementation, but implementers may wish to provide their own
382    /// implementation which transmutes something like `vec![0u32; len]`.
383    #[must_use]
384    #[inline]
385    fn zero_vec(len: usize) -> Vec<Self> {
386        vec![Self::ZERO; len]
387    }
388}
389
390/// A vector space `V` over `F` with a fixed basis. Fixing the basis allows elements of `V` to be
391/// converted to and from `DIMENSION` many elements of `F` which are interpreted as basis coefficients.
392///
393/// We usually expect `F` to be a field but do not enforce this and so allow it to be just a ring.
394/// This lets every ring implement `BasedVectorSpace<Self>` and is useful in a couple of other cases.
395///
396/// ## Safety
397/// We make no guarantees about consistency of the choice of basis across different versions of Plonky3.
398/// If this choice of basis changes, the behaviour of `BasedVectorSpace` will also change. Due to this,
399/// we recommend avoiding using this trait unless absolutely necessary.
400///
401/// ### Mathematical Description
402/// Given a vector space, `A` over `F`, a basis is a set of elements `B = {b_0, ..., b_{n-1}}`
403/// in `A` such that, given any element `a`, we can find a unique set of `n` elements of `F`,
404/// `f_0, ..., f_{n - 1}` satisfying `a = f_0 b_0 + ... + f_{n - 1} b_{n - 1}`. Thus the choice
405/// of `B` gives rise to a natural linear map between the vector space `A` and the canonical
406/// `n` dimensional vector space `F^n`.
407///
408/// This allows us to map between elements of `A` and arrays of `n` elements of `F`.
409/// Clearly this map depends entirely on the choice of basis `B` which may change
410/// across versions of Plonky3.
411///
412/// The situation is slightly more complicated in cases where `F` is not a field but boils down
413/// to an identical description once we enforce that `A` is a free module over `F`.
414pub trait BasedVectorSpace<F: PrimeCharacteristicRing>: Sized {
415    /// The dimension of the vector space, i.e. the number of elements in
416    /// its basis.
417    const DIMENSION: usize;
418
419    /// Fixes a basis for the algebra `A` and uses this to
420    /// map an element of `A` to a slice of `DIMENSION` `F` elements.
421    ///
422    /// # Safety
423    ///
424    /// The value produced by this function fundamentally depends
425    /// on the choice of basis. Care must be taken
426    /// to ensure portability if these values might ever be passed to
427    /// (or rederived within) another compilation environment where a
428    /// different basis might have been used.
429    #[must_use]
430    fn as_basis_coefficients_slice(&self) -> &[F];
431
432    /// Fixes a basis for the algebra `A` and uses this to
433    /// map `DIMENSION` `F` elements to an element of `A`.
434    ///
435    /// # Safety
436    ///
437    /// The value produced by this function fundamentally depends
438    /// on the choice of basis. Care must be taken
439    /// to ensure portability if these values might ever be passed to
440    /// (or rederived within) another compilation environment where a
441    /// different basis might have been used.
442    ///
443    /// Returns `None` if the length of the slice is different to `DIMENSION`.
444    #[must_use]
445    #[inline]
446    fn from_basis_coefficients_slice(slice: &[F]) -> Option<Self> {
447        Self::from_basis_coefficients_iter(slice.iter().cloned())
448    }
449
450    /// Fixes a basis for the algebra `A` and uses this to
451    /// map `DIMENSION` `F` elements to an element of `A`. Similar
452    /// to `core:array::from_fn`, the `DIMENSION` `F` elements are
453    /// given by `Fn(0), ..., Fn(DIMENSION - 1)` called in that order.
454    ///
455    /// # Safety
456    ///
457    /// The value produced by this function fundamentally depends
458    /// on the choice of basis. Care must be taken
459    /// to ensure portability if these values might ever be passed to
460    /// (or rederived within) another compilation environment where a
461    /// different basis might have been used.
462    #[must_use]
463    fn from_basis_coefficients_fn<Fn: FnMut(usize) -> F>(f: Fn) -> Self;
464
465    /// Fixes a basis for the algebra `A` and uses this to
466    /// map `DIMENSION` `F` elements to an element of `A`.
467    ///
468    /// # Safety
469    ///
470    /// The value produced by this function fundamentally depends
471    /// on the choice of basis. Care must be taken
472    /// to ensure portability if these values might ever be passed to
473    /// (or rederived within) another compilation environment where a
474    /// different basis might have been used.
475    ///
476    /// Returns `None` if the length of the iterator is different to `DIMENSION`.
477    #[must_use]
478    fn from_basis_coefficients_iter<I: ExactSizeIterator<Item = F>>(iter: I) -> Option<Self>;
479
480    /// Given a basis for the Algebra `A`, return the i'th basis element.
481    ///
482    /// # Safety
483    ///
484    /// The value produced by this function fundamentally depends
485    /// on the choice of basis. Care must be taken
486    /// to ensure portability if these values might ever be passed to
487    /// (or rederived within) another compilation environment where a
488    /// different basis might have been used.
489    ///
490    /// Returns `None` if `i` is greater than or equal to `DIMENSION`.
491    #[must_use]
492    #[inline]
493    fn ith_basis_element(i: usize) -> Option<Self> {
494        (i < Self::DIMENSION).then(|| Self::from_basis_coefficients_fn(|j| F::from_bool(i == j)))
495    }
496
497    /// Convert from a vector of `Self` to a vector of `F` by flattening the basis coefficients.
498    ///
499    /// Depending on the `BasedVectorSpace` this may be essentially a no-op and should certainly
500    /// be reimplemented in those cases.
501    ///
502    /// # Safety
503    ///
504    /// The value produced by this function fundamentally depends
505    /// on the choice of basis. Care must be taken
506    /// to ensure portability if these values might ever be passed to
507    /// (or rederived within) another compilation environment where a
508    /// different basis might have been used.
509    #[must_use]
510    #[inline]
511    fn flatten_to_base(vec: Vec<Self>) -> Vec<F> {
512        vec.into_iter()
513            .flat_map(|x| x.as_basis_coefficients_slice().to_vec())
514            .collect()
515    }
516
517    /// Convert from a vector of `F` to a vector of `Self` by combining the basis coefficients.
518    ///
519    /// Depending on the `BasedVectorSpace` this may be essentially a no-op and should certainly
520    /// be reimplemented in those cases.
521    ///
522    /// # Panics
523    /// This will panic if the length of `vec` is not a multiple of `Self::DIMENSION`.
524    ///
525    /// # Safety
526    ///
527    /// The value produced by this function fundamentally depends
528    /// on the choice of basis. Care must be taken
529    /// to ensure portability if these values might ever be passed to
530    /// (or rederived within) another compilation environment where a
531    /// different basis might have been used.
532    #[must_use]
533    #[inline]
534    fn reconstitute_from_base(vec: Vec<F>) -> Vec<Self>
535    where
536        F: Sync,
537        Self: Send,
538    {
539        assert_eq!(vec.len() % Self::DIMENSION, 0);
540
541        vec.par_chunks_exact(Self::DIMENSION)
542            .map(|chunk| {
543                Self::from_basis_coefficients_slice(chunk)
544                    .expect("Chunk length not equal to dimension")
545            })
546            .collect()
547    }
548}
549
550impl<F: PrimeCharacteristicRing> BasedVectorSpace<F> for F {
551    const DIMENSION: usize = 1;
552
553    #[inline]
554    fn as_basis_coefficients_slice(&self) -> &[F] {
555        slice::from_ref(self)
556    }
557
558    #[inline]
559    fn from_basis_coefficients_fn<Fn: FnMut(usize) -> F>(mut f: Fn) -> Self {
560        f(0)
561    }
562
563    #[inline]
564    fn from_basis_coefficients_iter<I: ExactSizeIterator<Item = F>>(mut iter: I) -> Option<Self> {
565        (iter.len() == 1).then(|| iter.next().unwrap()) // Unwrap will not panic as we know the length is 1.
566    }
567
568    #[inline]
569    fn flatten_to_base(vec: Vec<Self>) -> Vec<F> {
570        vec
571    }
572
573    #[inline]
574    fn reconstitute_from_base(vec: Vec<F>) -> Vec<Self> {
575        vec
576    }
577}
578
579/// A ring implements `InjectiveMonomial<N>` if the algebraic function
580/// `f(x) = x^N` is an injective map on elements of the ring.
581///
582/// We do not enforce that this map be invertible as there are useful
583/// cases such as polynomials or symbolic expressions where no inverse exists.
584///
585/// However, if the ring is a field with order `q` or an array of such field elements,
586/// then `f(x) = x^N` will be injective if and only if it is invertible and so in
587/// such cases this monomial acts as a permutation. Moreover, this will occur
588/// exactly when `N` and `q - 1` are relatively prime i.e. `gcd(N, q - 1) = 1`.
589pub trait InjectiveMonomial<const N: u64>: PrimeCharacteristicRing {
590    /// Compute `x -> x^n` for a given `n > 1` such that this
591    /// map is injective.
592    #[must_use]
593    #[inline]
594    fn injective_exp_n(&self) -> Self {
595        self.exp_const_u64::<N>()
596    }
597}
598
599/// A ring implements `PermutationMonomial<N>` if the algebraic function
600/// `f(x) = x^N` is invertible and thus acts as a permutation on elements of the ring.
601///
602/// In all cases we care about, this means that we can find another integer `K` such
603/// that `x = x^{NK}` for all elements of our ring.
604pub trait PermutationMonomial<const N: u64>: InjectiveMonomial<N> {
605    /// Compute `x -> x^K` for a given `K > 1` such that
606    /// `x^{NK} = x` for all elements `x`.
607    #[must_use]
608    fn injective_exp_root_n(&self) -> Self;
609}
610
611/// A ring `R` implements `Algebra<F>` if there is an injective homomorphism
612///  from `F` into `R`; in particular only `F::ZERO` maps to `R::ZERO`.
613///
614/// For the most part, we will usually expect `F` to be a field but there
615/// are a few cases where it is handy to allow it to just be a ring. In
616/// particular, every ring naturally implements `Algebra<Self>`.
617///
618/// ### Mathematical Description
619///
620/// Let `x` and `y` denote arbitrary elements of `F`. Then
621/// we require that our map `from` has the properties:
622/// - Preserves Identity: `from(F::ONE) = R::ONE`
623/// - Commutes with Addition: `from(x + y) = from(x) + from(y)`
624/// - Commutes with Multiplication: `from(x * y) = from(x) * from(y)`
625///
626/// Such maps are known as ring homomorphisms and are injective if the
627/// only element which maps to `R::ZERO` is `F::ZERO`.
628///
629/// The existence of this map makes `R` into an `F`-module and hence an `F`-algebra.
630/// If, additionally, `R` is a field, then this makes `R` a field extension of `F`.
631pub trait Algebra<F>:
632    PrimeCharacteristicRing
633    + From<F>
634    + Add<F, Output = Self>
635    + AddAssign<F>
636    + Sub<F, Output = Self>
637    + SubAssign<F>
638    + Mul<F, Output = Self>
639    + MulAssign<F>
640{
641}
642
643// Every ring is an algebra over itself.
644impl<R: PrimeCharacteristicRing> Algebra<R> for R {}
645
646/// A collection of methods designed to help hash field elements.
647///
648/// Most fields will want to reimplement many/all of these methods as the default implementations
649/// are slow and involve converting to/from byte representations.
650pub trait RawDataSerializable: Sized {
651    /// The number of bytes which this field element occupies in memory.
652    /// Must be equal to the length of self.into_bytes().
653    const NUM_BYTES: usize;
654
655    /// Convert a field element into a collection of bytes.
656    #[must_use]
657    fn into_bytes(self) -> impl IntoIterator<Item = u8>;
658
659    /// Convert an iterator of field elements into an iterator of bytes.
660    #[must_use]
661    fn into_byte_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u8> {
662        input.into_iter().flat_map(|elem| elem.into_bytes())
663    }
664
665    /// Convert an iterator of field elements into an iterator of u32s.
666    ///
667    /// If `NUM_BYTES` does not divide `4`, multiple `F`s may be packed together to make a single `u32`. Furthermore,
668    /// if `NUM_BYTES * input.len()` does not divide `4`, the final `u32` will involve padding bytes which are set to `0`.
669    #[must_use]
670    fn into_u32_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u32> {
671        let bytes = Self::into_byte_stream(input);
672        iter_array_chunks_padded(bytes, 0).map(u32::from_le_bytes)
673    }
674
675    /// Convert an iterator of field elements into an iterator of u64s.
676    ///
677    /// If `NUM_BYTES` does not divide `8`, multiple `F`s may be packed together to make a single `u64`. Furthermore,
678    /// if `NUM_BYTES * input.len()` does not divide `8`, the final `u64` will involve padding bytes which are set to `0`.
679    #[must_use]
680    fn into_u64_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u64> {
681        let bytes = Self::into_byte_stream(input);
682        iter_array_chunks_padded(bytes, 0).map(u64::from_le_bytes)
683    }
684
685    /// Convert an iterator of field element arrays into an iterator of byte arrays.
686    ///
687    /// Converts an element `[F; N]` into the byte array `[[u8; N]; NUM_BYTES]`. This is
688    /// intended for use with vectorized hash functions which use vector operations
689    /// to compute several hashes in parallel.
690    #[must_use]
691    fn into_parallel_byte_streams<const N: usize>(
692        input: impl IntoIterator<Item = [Self; N]>,
693    ) -> impl IntoIterator<Item = [u8; N]> {
694        input.into_iter().flat_map(|vector| {
695            let bytes = vector.map(|elem| elem.into_bytes().into_iter().collect::<Vec<_>>());
696            (0..Self::NUM_BYTES).map(move |i| array::from_fn(|j| bytes[j][i]))
697        })
698    }
699
700    /// Convert an iterator of field element arrays into an iterator of u32 arrays.
701    ///
702    /// Converts an element `[F; N]` into the u32 array `[[u32; N]; NUM_BYTES/4]`. This is
703    /// intended for use with vectorized hash functions which use vector operations
704    /// to compute several hashes in parallel.
705    ///
706    /// This function is guaranteed to be equivalent to starting with `Iterator<[F; N]>` performing a transpose
707    /// operation to get `[Iterator<F>; N]`, calling `into_u32_stream` on each element to get `[Iterator<u32>; N]` and then
708    /// performing another transpose operation to get `Iterator<[u32; N]>`.
709    ///
710    /// If `NUM_BYTES` does not divide `4`, multiple `[F; N]`s may be packed together to make a single `[u32; N]`. Furthermore,
711    /// if `NUM_BYTES * input.len()` does not divide `4`, the final `[u32; N]` will involve padding bytes which are set to `0`.
712    #[must_use]
713    fn into_parallel_u32_streams<const N: usize>(
714        input: impl IntoIterator<Item = [Self; N]>,
715    ) -> impl IntoIterator<Item = [u32; N]> {
716        let bytes = Self::into_parallel_byte_streams(input);
717        iter_array_chunks_padded(bytes, [0; N]).map(|byte_array: [[u8; N]; 4]| {
718            array::from_fn(|i| u32::from_le_bytes(array::from_fn(|j| byte_array[j][i])))
719        })
720    }
721
722    /// Convert an iterator of field element arrays into an iterator of u64 arrays.
723    ///
724    /// Converts an element `[F; N]` into the u64 array `[[u64; N]; NUM_BYTES/8]`. This is
725    /// intended for use with vectorized hash functions which use vector operations
726    /// to compute several hashes in parallel.
727    ///
728    /// This function is guaranteed to be equivalent to starting with `Iterator<[F; N]>` performing a transpose
729    /// operation to get `[Iterator<F>; N]`, calling `into_u64_stream` on each element to get `[Iterator<u64>; N]` and then
730    /// performing another transpose operation to get `Iterator<[u64; N]>`.
731    ///
732    /// If `NUM_BYTES` does not divide `8`, multiple `[F; N]`s may be packed together to make a single `[u64; N]`. Furthermore,
733    /// if `NUM_BYTES * input.len()` does not divide `8`, the final `[u64; N]` will involve padding bytes which are set to `0`.
734    #[must_use]
735    fn into_parallel_u64_streams<const N: usize>(
736        input: impl IntoIterator<Item = [Self; N]>,
737    ) -> impl IntoIterator<Item = [u64; N]> {
738        let bytes = Self::into_parallel_byte_streams(input);
739        iter_array_chunks_padded(bytes, [0; N]).map(|byte_array: [[u8; N]; 8]| {
740            array::from_fn(|i| u64::from_le_bytes(array::from_fn(|j| byte_array[j][i])))
741        })
742    }
743}
744
745/// A field `F`. This permits both modular fields `ℤ/p` along with their field extensions.
746///
747/// A ring is a field if every element `x` has a unique multiplicative inverse `x^{-1}`
748/// which satisfies `x * x^{-1} = F::ONE`.
749pub trait Field:
750    Algebra<Self>
751    + RawDataSerializable
752    + Packable
753    + 'static
754    + Copy
755    + Div<Self, Output = Self>
756    + DivAssign
757    + Add<Self::Packing, Output = Self::Packing>
758    + Sub<Self::Packing, Output = Self::Packing>
759    + Mul<Self::Packing, Output = Self::Packing>
760    + Eq
761    + Hash
762    + Send
763    + Sync
764    + Display
765    + Serialize
766    + DeserializeOwned
767{
768    type Packing: PackedField<Scalar = Self>;
769
770    /// A generator of this field's multiplicative group.
771    const GENERATOR: Self;
772
773    /// Check if the given field element is equal to the unique additive identity (ZERO).
774    #[must_use]
775    #[inline]
776    fn is_zero(&self) -> bool {
777        *self == Self::ZERO
778    }
779
780    /// Check if the given field element is equal to the unique multiplicative identity (ONE).
781    #[must_use]
782    #[inline]
783    fn is_one(&self) -> bool {
784        *self == Self::ONE
785    }
786
787    /// The multiplicative inverse of this field element, if it exists.
788    ///
789    /// NOTE: The inverse of `0` is undefined and will return `None`.
790    #[must_use]
791    fn try_inverse(&self) -> Option<Self>;
792
793    /// The multiplicative inverse of this field element.
794    ///
795    /// # Panics
796    /// The function will panic if the field element is `0`.
797    /// Use try_inverse if you want to handle this case.
798    #[must_use]
799    fn inverse(&self) -> Self {
800        self.try_inverse().expect("Tried to invert zero")
801    }
802
803    /// Add two slices of field elements together, returning the result in the first slice.
804    ///
805    /// Makes use of packing to speed up the addition.
806    ///
807    /// This is optimal for cases where the two slices are small to medium length. E.g. between
808    /// `F::Packing::WIDTH` and roughly however many elements fit in a cache line.
809    ///
810    /// For larger slices, it's likely worthwhile to use parallelization before calling this.
811    /// Similarly if you need to add a large number of slices together, it's best to
812    /// break them into small chunks and call this on the smaller chunks.
813    ///
814    /// # Panics
815    /// The function will panic if the lengths of the two slices are not equal.
816    #[inline]
817    fn add_slices(slice_1: &mut [Self], slice_2: &[Self]) {
818        let (shorts_1, suffix_1) = Self::Packing::pack_slice_with_suffix_mut(slice_1);
819        let (shorts_2, suffix_2) = Self::Packing::pack_slice_with_suffix(slice_2);
820        debug_assert_eq!(shorts_1.len(), shorts_2.len());
821        debug_assert_eq!(suffix_1.len(), suffix_2.len());
822        for (x_1, &x_2) in shorts_1.iter_mut().zip(shorts_2) {
823            *x_1 += x_2;
824        }
825        for (x_1, &x_2) in suffix_1.iter_mut().zip(suffix_2) {
826            *x_1 += x_2;
827        }
828    }
829
830    /// The number of elements in the field.
831    ///
832    /// This will either be prime if the field is a PrimeField or a power of a
833    /// prime if the field is an extension field.
834    #[must_use]
835    fn order() -> BigUint;
836
837    /// The number of bits required to define an element of this field.
838    ///
839    /// Usually due to storage and practical reasons the memory size of
840    /// a field element will be a little larger than bits().
841    #[must_use]
842    #[inline]
843    fn bits() -> usize {
844        Self::order().bits() as usize
845    }
846}
847
848/// A field isomorphic to `ℤ/p` for some prime `p`.
849///
850/// There is a natural map from `ℤ` to `ℤ/p` which sends an integer `r` to its conjugacy class `[r]`.
851/// Canonically, each conjugacy class `[r]` can be represented by the unique integer `s` in `[0, p - 1)`
852/// satisfying `s = r mod p`. This however is often not the most convenient computational representation
853/// and so internal representations of field elements might differ from this and may change over time.
854pub trait PrimeField:
855    Field
856    + Ord
857    + QuotientMap<u8>
858    + QuotientMap<u16>
859    + QuotientMap<u32>
860    + QuotientMap<u64>
861    + QuotientMap<u128>
862    + QuotientMap<usize>
863    + QuotientMap<i8>
864    + QuotientMap<i16>
865    + QuotientMap<i32>
866    + QuotientMap<i64>
867    + QuotientMap<i128>
868    + QuotientMap<isize>
869{
870    /// Return the representative of `value` in canonical form
871    /// which lies in the range `0 <= x < self.order()`.
872    #[must_use]
873    fn as_canonical_biguint(&self) -> BigUint;
874}
875
876/// A prime field `ℤ/p` with order, `p < 2^64`.
877pub trait PrimeField64: PrimeField {
878    const ORDER_U64: u64;
879
880    /// Return the representative of `value` in canonical form
881    /// which lies in the range `0 <= x < ORDER_U64`.
882    #[must_use]
883    fn as_canonical_u64(&self) -> u64;
884
885    /// Convert a field element to a `u64` such that any two field elements
886    /// are converted to the same `u64` if and only if they represent the same value.
887    ///
888    /// This will be the fastest way to convert a field element to a `u64` and
889    /// is intended for use in hashing. It will also be consistent across different targets.
890    #[must_use]
891    #[inline(always)]
892    fn to_unique_u64(&self) -> u64 {
893        // A simple default which is optimal for some fields.
894        self.as_canonical_u64()
895    }
896}
897
898/// A prime field `ℤ/p` with order `p < 2^32`.
899pub trait PrimeField32: PrimeField64 {
900    const ORDER_U32: u32;
901
902    /// Return the representative of `value` in canonical form
903    /// which lies in the range `0 <= x < ORDER_U64`.
904    #[must_use]
905    fn as_canonical_u32(&self) -> u32;
906
907    /// Convert a field element to a `u32` such that any two field elements
908    /// are converted to the same `u32` if and only if they represent the same value.
909    ///
910    /// This will be the fastest way to convert a field element to a `u32` and
911    /// is intended for use in hashing. It will also be consistent across different targets.
912    #[must_use]
913    #[inline(always)]
914    fn to_unique_u32(&self) -> u32 {
915        // A simple default which is optimal for some fields.
916        self.as_canonical_u32()
917    }
918}
919
920/// A field `EF` which is also an algebra over a field `F`.
921///
922/// This provides a couple of convenience methods on top of the
923/// standard methods provided by `Field`, `Algebra<F>` and `BasedVectorSpace<F>`.
924///
925/// It also provides a type which handles packed vectors of extension field elements.
926pub trait ExtensionField<Base: Field>: Field + Algebra<Base> + BasedVectorSpace<Base> {
927    type ExtensionPacking: PackedFieldExtension<Base, Self> + 'static + Copy + Send + Sync;
928
929    /// Determine if the given element lies in the base field.
930    #[must_use]
931    fn is_in_basefield(&self) -> bool;
932
933    /// If the element lies in the base field project it down.
934    /// Otherwise return None.
935    #[must_use]
936    fn as_base(&self) -> Option<Base>;
937}
938
939// Every field is trivially a one dimensional extension over itself.
940impl<F: Field> ExtensionField<F> for F {
941    type ExtensionPacking = F::Packing;
942
943    #[inline]
944    fn is_in_basefield(&self) -> bool {
945        true
946    }
947
948    #[inline]
949    fn as_base(&self) -> Option<F> {
950        Some(*self)
951    }
952}
953
954/// A field which supplies information like the two-adicity of its multiplicative group, and methods
955/// for obtaining two-adic generators.
956pub trait TwoAdicField: Field {
957    /// The number of factors of two in this field's multiplicative group.
958    const TWO_ADICITY: usize;
959
960    /// Returns a generator of the multiplicative group of order `2^bits`.
961    /// Assumes `bits <= TWO_ADICITY`, otherwise the result is undefined.
962    #[must_use]
963    fn two_adic_generator(bits: usize) -> Self;
964}
965
966/// An iterator which returns the powers of a base element `b` shifted by current `c`: `c, c * b, c * b^2, ...`.
967#[derive(Clone, Debug)]
968pub struct Powers<R: PrimeCharacteristicRing> {
969    pub base: R,
970    pub current: R,
971}
972
973impl<R: PrimeCharacteristicRing> Iterator for Powers<R> {
974    type Item = R;
975
976    fn next(&mut self) -> Option<R> {
977        let result = self.current.clone();
978        self.current *= self.base.clone();
979        Some(result)
980    }
981}
982
983impl<R: PrimeCharacteristicRing> Powers<R> {
984    /// Returns an iterator yielding the first `n` powers.
985    #[inline]
986    #[must_use]
987    pub const fn take(self, n: usize) -> BoundedPowers<R> {
988        BoundedPowers { iter: self, n }
989    }
990
991    /// Fills `slice` with the next `slice.len()` powers yielded by the iterator.
992    #[inline]
993    pub fn fill(self, slice: &mut [R]) {
994        slice
995            .iter_mut()
996            .zip(self)
997            .for_each(|(out, next)| *out = next);
998    }
999
1000    /// Wrapper for `self.take(n).collect()`.
1001    #[inline]
1002    #[must_use]
1003    pub fn collect_n(self, n: usize) -> Vec<R> {
1004        self.take(n).collect()
1005    }
1006}
1007
1008impl<F: Field> BoundedPowers<F> {
1009    /// Collect exactly `num_powers` ascending powers of `self.base`, starting at `self.current`.
1010    ///
1011    /// # Details
1012    ///
1013    /// The computation is split evenly amongst available threads, and each chunk is computed
1014    /// using packed fields.
1015    ///
1016    /// # Performance
1017    ///
1018    /// Enable the `parallel` feature to enable parallelization.
1019    #[must_use]
1020    pub fn collect(self) -> Vec<F> {
1021        let num_powers = self.n;
1022
1023        // When num_powers is small, fallback to serial computation
1024        if num_powers < 16 {
1025            return self.take(num_powers).collect();
1026        }
1027
1028        // Allocate buffer storing packed powers, containing at least `num_powers` scalars.
1029        let width = F::Packing::WIDTH;
1030        let num_packed = num_powers.div_ceil(width);
1031        let mut points_packed = F::Packing::zero_vec(num_packed);
1032
1033        // Split computation evenly among threads
1034        let num_threads = current_num_threads().max(1);
1035        let chunk_size = num_packed.div_ceil(num_threads);
1036
1037        // Precompute base for each chunk.
1038        let base = self.iter.base;
1039        let chunk_base = base.exp_u64((chunk_size * width) as u64);
1040        let shift = self.iter.current;
1041
1042        points_packed
1043            .par_chunks_mut(chunk_size)
1044            .enumerate()
1045            .for_each(|(chunk_idx, chunk_slice)| {
1046                // First power in this chunk
1047                let chunk_start = shift * chunk_base.exp_u64(chunk_idx as u64);
1048
1049                // Fill the chunk with packed powers.
1050                F::Packing::packed_shifted_powers(base, chunk_start).fill(chunk_slice);
1051            });
1052
1053        // return the number of requested points, discarding the unused packed powers
1054        // SAFETY: size_of::<F::Packing> always divides size_of::<F::Packing>.
1055        let mut points = unsafe { flatten_to_base(points_packed) };
1056        points.truncate(num_powers);
1057        points
1058    }
1059}
1060
1061/// Same as [`Powers`], but returns a bounded number of powers.
1062#[derive(Clone, Debug)]
1063pub struct BoundedPowers<R: PrimeCharacteristicRing> {
1064    iter: Powers<R>,
1065    n: usize,
1066}
1067
1068impl<R: PrimeCharacteristicRing> Iterator for BoundedPowers<R> {
1069    type Item = R;
1070
1071    fn next(&mut self) -> Option<R> {
1072        (self.n != 0).then(|| {
1073            self.n -= 1;
1074            self.iter.next().unwrap()
1075        })
1076    }
1077}