p3_field/
field.rs

1use alloc::vec;
2use alloc::vec::Vec;
3use core::fmt::{Debug, Display};
4use core::hash::Hash;
5use core::iter::{Product, Sum};
6use core::ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign};
7use core::{array, slice};
8
9use num_bigint::BigUint;
10use p3_maybe_rayon::prelude::*;
11use p3_util::{flatten_to_base, iter_array_chunks_padded};
12use serde::Serialize;
13use serde::de::DeserializeOwned;
14
15use crate::exponentiation::bits_u64;
16use crate::integers::{QuotientMap, from_integer_types};
17use crate::packed::PackedField;
18use crate::{Packable, PackedFieldExtension, PackedValue};
19
20/// A commutative ring, `R`, with prime characteristic, `p`.
21///
22/// This permits elements like:
23/// - A single finite field element.
24/// - A symbolic expression which would evaluate to a field element.
25/// - An array of finite field elements.
26/// - A polynomial with coefficients in a finite field.
27///
28/// ### Mathematical Description
29///
30/// Mathematically, a commutative ring is a set of objects which supports an addition-like
31/// like operation, `+`, and a multiplication-like operation `*`.
32///
33/// Let `x, y, z` denote arbitrary elements of the set.
34///
35/// Then, an operation is addition-like if it satisfies the following properties:
36/// - Commutativity => `x + y = y + x`
37/// - Associativity => `x + (y + z) = (x + y) + z`
38/// - Unit => There exists an identity element `ZERO` satisfying `x + ZERO = x`.
39/// - Inverses => For every `x` there exists a unique inverse `(-x)` satisfying `x + (-x) = ZERO`
40///
41/// Similarly, an operation is multiplication-like if it satisfies the following properties:
42/// - Commutativity => `x * y = y * x`
43/// - Associativity => `x * (y * z) = (x * y) * z`
44/// - Unit => There exists an identity element `ONE` satisfying `x * ONE = x`.
45/// - Distributivity => The two operations `+` and `*` must together satisfy `x * (y + z) = (x * y) + (x * z)`
46///
47/// Unlike in the addition case, we do not require inverses to exist with respect to `*`.
48///
49/// The simplest examples of commutative rings are the integers (`ℤ`), and the integers mod `N` (`ℤ/N`).
50///
51/// The characteristic of a ring is the smallest positive integer `r` such that `0 = r . 1 = 1 + 1 + ... + 1 (r times)`.
52/// For example, the characteristic of the modulo ring `ℤ/N` is `N`.
53///
54/// Rings with prime characteristic are particularly special due to their close relationship with finite fields.
55pub trait PrimeCharacteristicRing:
56    Sized
57    + Default
58    + Clone
59    + Add<Output = Self>
60    + AddAssign
61    + Sub<Output = Self>
62    + SubAssign
63    + Neg<Output = Self>
64    + Mul<Output = Self>
65    + MulAssign
66    + Sum
67    + Product
68    + Debug
69{
70    /// The field `ℤ/p` where the characteristic of this ring is p.
71    type PrimeSubfield: PrimeField;
72
73    /// The additive identity of the ring.
74    ///
75    /// For every element `a` in the ring we require the following properties:
76    ///
77    /// `a + ZERO = ZERO + a = a,`
78    ///
79    /// `a + (-a) = (-a) + a = ZERO.`
80    const ZERO: Self;
81
82    /// The multiplicative identity of the ring.
83    ///
84    /// For every element `a` in the ring we require the following property:
85    ///
86    /// `a*ONE = ONE*a = a.`
87    const ONE: Self;
88
89    /// The element in the ring given by `ONE + ONE`.
90    ///
91    /// This is provided as a convenience as `TWO` occurs regularly in
92    /// the proving system. This also is slightly faster than computing
93    /// it via addition. Note that multiplication by `TWO` is discouraged.
94    /// Instead of `a * TWO` use `a.double()` which will be faster.
95    ///
96    /// If the field has characteristic 2 this is equal to ZERO.
97    const TWO: Self;
98
99    /// The element in the ring given by `-ONE`.
100    ///
101    /// This is provided as a convenience as `NEG_ONE` occurs regularly in
102    /// the proving system. This also is slightly faster than computing
103    /// it via negation. Note that where possible `NEG_ONE` should be absorbed
104    /// into mathematical operations. For example `a - b` will be faster
105    /// than `a + NEG_ONE * b` and similarly `(-b)` is faster than `NEG_ONE * b`.
106    ///
107    /// If the field has characteristic 2 this is equal to ONE.
108    const NEG_ONE: Self;
109
110    /// Embed an element of the prime field `ℤ/p` into the ring `R`.
111    ///
112    /// Given any element `[r] ∈ ℤ/p`, represented by an integer `r` between `0` and `p - 1`
113    /// `from_prime_subfield([r])` will be equal to:
114    ///
115    /// `Self::ONE + ... + Self::ONE (r times)`
116    #[must_use]
117    fn from_prime_subfield(f: Self::PrimeSubfield) -> Self;
118
119    /// Return `Self::ONE` if `b` is `true` and `Self::ZERO` if `b` is `false`.
120    #[must_use]
121    #[inline(always)]
122    fn from_bool(b: bool) -> Self {
123        // Some rings might reimplement this to avoid the branch.
124        if b { Self::ONE } else { Self::ZERO }
125    }
126
127    from_integer_types!(
128        u8, u16, u32, u64, u128, usize, i8, i16, i32, i64, i128, isize
129    );
130
131    /// The elementary function `double(a) = 2*a`.
132    ///
133    /// This function should be preferred over calling `a + a` or `TWO * a` as a faster implementation may be available for some rings.
134    /// If the field has characteristic 2 then this returns 0.
135    #[must_use]
136    #[inline(always)]
137    fn double(&self) -> Self {
138        self.clone() + self.clone()
139    }
140
141    /// The elementary function `halve(a) = a/2`.
142    ///
143    /// # Panics
144    /// The function will panic if the field has characteristic 2.
145    #[must_use]
146    #[inline]
147    fn halve(&self) -> Self {
148        // This must be overwritten by PrimeField implementations as this definition
149        // is circular when PrimeSubfield = Self. It should also be overwritten by
150        // most rings to avoid the multiplication.
151        let half = Self::from_prime_subfield(Self::PrimeSubfield::ONE.halve());
152        self.clone() * half
153    }
154
155    /// The elementary function `square(a) = a^2`.
156    ///
157    /// This function should be preferred over calling `a * a`, as a faster implementation may be available for some rings.
158    #[must_use]
159    #[inline(always)]
160    fn square(&self) -> Self {
161        self.clone() * self.clone()
162    }
163
164    /// The elementary function `cube(a) = a^3`.
165    ///
166    /// This function should be preferred over calling `a * a * a`, as a faster implementation may be available for some rings.
167    #[must_use]
168    #[inline(always)]
169    fn cube(&self) -> Self {
170        self.square() * self.clone()
171    }
172
173    /// Computes the arithmetic generalization of boolean `xor`.
174    ///
175    /// For boolean inputs, `x ^ y = x + y - 2 xy`.
176    #[must_use]
177    #[inline(always)]
178    fn xor(&self, y: &Self) -> Self {
179        self.clone() + y.clone() - self.clone() * y.clone().double()
180    }
181
182    /// Computes the arithmetic generalization of a triple `xor`.
183    ///
184    /// For boolean inputs `x ^ y ^ z = x + y + z - 2(xy + xz + yz) + 4xyz`.
185    #[must_use]
186    #[inline(always)]
187    fn xor3(&self, y: &Self, z: &Self) -> Self {
188        self.xor(y).xor(z)
189    }
190
191    /// Computes the arithmetic generalization of `andnot`.
192    ///
193    /// For boolean inputs `(!x) & y = (1 - x)y`.
194    #[must_use]
195    #[inline(always)]
196    fn andn(&self, y: &Self) -> Self {
197        (Self::ONE - self.clone()) * y.clone()
198    }
199
200    /// The vanishing polynomial for boolean values: `x * (x - 1)`.
201    ///
202    /// This is a polynomial of degree `2` that evaluates to `0` if the input is `0` or `1`.
203    /// If our space is a field, then this will be nonzero on all other inputs.
204    #[must_use]
205    #[inline(always)]
206    fn bool_check(&self) -> Self {
207        // Note: We could delegate to `andn`, but to maintain backwards
208        // compatible AIR definitions, we stick with `x * (x - 1)` here.
209        self.clone() * (self.clone() - Self::ONE)
210    }
211
212    /// Exponentiation by a `u64` power.
213    ///
214    /// This uses the standard square and multiply approach.
215    /// For specific powers regularly used and known in advance,
216    /// this will be slower than custom addition chain exponentiation.
217    #[must_use]
218    #[inline]
219    fn exp_u64(&self, power: u64) -> Self {
220        let mut current = self.clone();
221        let mut product = Self::ONE;
222
223        for j in 0..bits_u64(power) {
224            if (power >> j) & 1 != 0 {
225                product *= current.clone();
226            }
227            current = current.square();
228        }
229        product
230    }
231
232    /// Exponentiation by a small constant power.
233    ///
234    /// For a collection of small values we implement custom multiplication chain circuits which can be faster than the
235    /// simpler square and multiply approach.
236    ///
237    /// For large values this defaults back to `self.exp_u64`.
238    #[must_use]
239    #[inline(always)]
240    fn exp_const_u64<const POWER: u64>(&self) -> Self {
241        match POWER {
242            0 => Self::ONE,
243            1 => self.clone(),
244            2 => self.square(),
245            3 => self.cube(),
246            4 => self.square().square(),
247            5 => self.square().square() * self.clone(),
248            6 => self.square().cube(),
249            7 => {
250                let x2 = self.square();
251                let x3 = x2.clone() * self.clone();
252                let x4 = x2.square();
253                x3 * x4
254            }
255            _ => self.exp_u64(POWER),
256        }
257    }
258
259    /// The elementary function `exp_power_of_2(a, power_log) = a^{2^power_log}`.
260    ///
261    /// Computed via repeated squaring.
262    #[must_use]
263    #[inline]
264    fn exp_power_of_2(&self, power_log: usize) -> Self {
265        let mut res = self.clone();
266        for _ in 0..power_log {
267            res = res.square();
268        }
269        res
270    }
271
272    /// The elementary function `mul_2exp_u64(a, exp) = a * 2^{exp}`.
273    ///
274    /// Here `2^{exp}` is computed using the square and multiply approach.
275    #[must_use]
276    #[inline]
277    fn mul_2exp_u64(&self, exp: u64) -> Self {
278        // Some rings might want to reimplement this to avoid the
279        // exponentiations (and potentially even the multiplication).
280        self.clone() * Self::TWO.exp_u64(exp)
281    }
282
283    /// Divide by a given power of two. `div_2exp_u64(a, exp) = a/2^exp`
284    ///
285    /// # Panics
286    /// The function will panic if the field has characteristic 2.
287    #[must_use]
288    #[inline]
289    fn div_2exp_u64(&self, exp: u64) -> Self {
290        // Some rings might want to reimplement this to avoid the
291        // exponentiations (and potentially even the multiplication).
292        self.clone() * Self::from_prime_subfield(Self::PrimeSubfield::ONE.halve().exp_u64(exp))
293    }
294
295    /// Construct an iterator which returns powers of `self`: `self^0, self^1, self^2, ...`.
296    #[must_use]
297    #[inline]
298    fn powers(&self) -> Powers<Self> {
299        self.shifted_powers(Self::ONE)
300    }
301
302    /// Construct an iterator which returns powers of `self` shifted by `start`: `start, start*self^1, start*self^2, ...`.
303    #[must_use]
304    #[inline]
305    fn shifted_powers(&self, start: Self) -> Powers<Self> {
306        Powers {
307            base: self.clone(),
308            current: start,
309        }
310    }
311
312    /// Compute the dot product of two vectors.
313    #[must_use]
314    #[inline]
315    fn dot_product<const N: usize>(u: &[Self; N], v: &[Self; N]) -> Self {
316        u.iter().zip(v).map(|(x, y)| x.clone() * y.clone()).sum()
317    }
318
319    /// Compute the sum of a slice of elements whose length is a compile time constant.
320    ///
321    /// The rust compiler doesn't realize that add is associative
322    /// so we help it out and minimize the dependency chains by hand.
323    /// Thus while this function has the same throughput as `input.iter().sum()`,
324    /// it will usually have much lower latency.
325    ///
326    /// # Panics
327    ///
328    /// May panic if the length of the input slice is not equal to `N`.
329    #[must_use]
330    #[inline]
331    fn sum_array<const N: usize>(input: &[Self]) -> Self {
332        // It looks a little strange but using a const parameter and an assert_eq! instead of
333        // using input.len() leads to a significant performance improvement.
334        // We could make this input &[Self; N] but that would require sticking .try_into().unwrap() everywhere.
335        // Checking godbolt, the compiler seems to unroll everything anyway.
336        assert_eq!(N, input.len());
337
338        // For `N <= 8` we implement a tree sum structure and for `N > 8` we break the input into
339        // chunks of `8`, perform a tree sum on each chunk and sum the results. The parameter `8`
340        // was determined experimentally by testing the speed of the poseidon2 internal layer computations.
341        // This is a useful benchmark as we have a mix of summations of size 15, 23 with other work in between.
342        // I only tested this on `AVX2` though so there might be a better value for other architectures.
343        match N {
344            0 => Self::ZERO,
345            1 => input[0].clone(),
346            2 => input[0].clone() + input[1].clone(),
347            3 => input[0].clone() + input[1].clone() + input[2].clone(),
348            4 => (input[0].clone() + input[1].clone()) + (input[2].clone() + input[3].clone()),
349            5 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<1>(&input[4..]),
350            6 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<2>(&input[4..]),
351            7 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<3>(&input[4..]),
352            8 => Self::sum_array::<4>(&input[..4]) + Self::sum_array::<4>(&input[4..]),
353            _ => {
354                // We know that N > 8 here so this saves an add over the usual
355                // initialisation of acc to Self::ZERO.
356                let mut acc = Self::sum_array::<8>(&input[..8]);
357                for i in (16..=N).step_by(8) {
358                    acc += Self::sum_array::<8>(&input[(i - 8)..i]);
359                }
360                // This would be much cleaner if we could use const generic expressions but
361                // this will do for now.
362                match N & 7 {
363                    0 => acc,
364                    1 => acc + Self::sum_array::<1>(&input[(8 * (N / 8))..]),
365                    2 => acc + Self::sum_array::<2>(&input[(8 * (N / 8))..]),
366                    3 => acc + Self::sum_array::<3>(&input[(8 * (N / 8))..]),
367                    4 => acc + Self::sum_array::<4>(&input[(8 * (N / 8))..]),
368                    5 => acc + Self::sum_array::<5>(&input[(8 * (N / 8))..]),
369                    6 => acc + Self::sum_array::<6>(&input[(8 * (N / 8))..]),
370                    7 => acc + Self::sum_array::<7>(&input[(8 * (N / 8))..]),
371                    _ => unreachable!(),
372                }
373            }
374        }
375    }
376
377    /// Allocates a vector of zero elements of length `len`. Many operating systems zero pages
378    /// before assigning them to a userspace process. In that case, our process should not need to
379    /// write zeros, which would be redundant. However, the compiler may not always recognize this.
380    ///
381    /// In particular, `vec![Self::ZERO; len]` appears to result in redundant userspace zeroing.
382    /// This is the default implementation, but implementers may wish to provide their own
383    /// implementation which transmutes something like `vec![0u32; len]`.
384    #[must_use]
385    #[inline]
386    fn zero_vec(len: usize) -> Vec<Self> {
387        vec![Self::ZERO; len]
388    }
389}
390
391/// A vector space `V` over `F` with a fixed basis. Fixing the basis allows elements of `V` to be
392/// converted to and from `DIMENSION` many elements of `F` which are interpreted as basis coefficients.
393///
394/// We usually expect `F` to be a field but do not enforce this and so allow it to be just a ring.
395/// This lets every ring implement `BasedVectorSpace<Self>` and is useful in a couple of other cases.
396///
397/// ## Safety
398/// We make no guarantees about consistency of the choice of basis across different versions of Plonky3.
399/// If this choice of basis changes, the behaviour of `BasedVectorSpace` will also change. Due to this,
400/// we recommend avoiding using this trait unless absolutely necessary.
401///
402/// ### Mathematical Description
403/// Given a vector space, `A` over `F`, a basis is a set of elements `B = {b_0, ..., b_{n-1}}`
404/// in `A` such that, given any element `a`, we can find a unique set of `n` elements of `F`,
405/// `f_0, ..., f_{n - 1}` satisfying `a = f_0 b_0 + ... + f_{n - 1} b_{n - 1}`. Thus the choice
406/// of `B` gives rise to a natural linear map between the vector space `A` and the canonical
407/// `n` dimensional vector space `F^n`.
408///
409/// This allows us to map between elements of `A` and arrays of `n` elements of `F`.
410/// Clearly this map depends entirely on the choice of basis `B` which may change
411/// across versions of Plonky3.
412///
413/// The situation is slightly more complicated in cases where `F` is not a field but boils down
414/// to an identical description once we enforce that `A` is a free module over `F`.
415pub trait BasedVectorSpace<F: PrimeCharacteristicRing>: Sized {
416    /// The dimension of the vector space, i.e. the number of elements in
417    /// its basis.
418    const DIMENSION: usize;
419
420    /// Fixes a basis for the algebra `A` and uses this to
421    /// map an element of `A` to a slice of `DIMENSION` `F` elements.
422    ///
423    /// # Safety
424    ///
425    /// The value produced by this function fundamentally depends
426    /// on the choice of basis. Care must be taken
427    /// to ensure portability if these values might ever be passed to
428    /// (or rederived within) another compilation environment where a
429    /// different basis might have been used.
430    #[must_use]
431    fn as_basis_coefficients_slice(&self) -> &[F];
432
433    /// Fixes a basis for the algebra `A` and uses this to
434    /// map `DIMENSION` `F` elements to an element of `A`.
435    ///
436    /// # Safety
437    ///
438    /// The value produced by this function fundamentally depends
439    /// on the choice of basis. Care must be taken
440    /// to ensure portability if these values might ever be passed to
441    /// (or rederived within) another compilation environment where a
442    /// different basis might have been used.
443    ///
444    /// Returns `None` if the length of the slice is different to `DIMENSION`.
445    #[must_use]
446    #[inline]
447    fn from_basis_coefficients_slice(slice: &[F]) -> Option<Self> {
448        Self::from_basis_coefficients_iter(slice.iter().cloned())
449    }
450
451    /// Fixes a basis for the algebra `A` and uses this to
452    /// map `DIMENSION` `F` elements to an element of `A`. Similar
453    /// to `core:array::from_fn`, the `DIMENSION` `F` elements are
454    /// given by `Fn(0), ..., Fn(DIMENSION - 1)` called in that order.
455    ///
456    /// # Safety
457    ///
458    /// The value produced by this function fundamentally depends
459    /// on the choice of basis. Care must be taken
460    /// to ensure portability if these values might ever be passed to
461    /// (or rederived within) another compilation environment where a
462    /// different basis might have been used.
463    #[must_use]
464    fn from_basis_coefficients_fn<Fn: FnMut(usize) -> F>(f: Fn) -> Self;
465
466    /// Fixes a basis for the algebra `A` and uses this to
467    /// map `DIMENSION` `F` elements to an element of `A`.
468    ///
469    /// # Safety
470    ///
471    /// The value produced by this function fundamentally depends
472    /// on the choice of basis. Care must be taken
473    /// to ensure portability if these values might ever be passed to
474    /// (or rederived within) another compilation environment where a
475    /// different basis might have been used.
476    ///
477    /// Returns `None` if the length of the iterator is different to `DIMENSION`.
478    #[must_use]
479    fn from_basis_coefficients_iter<I: ExactSizeIterator<Item = F>>(iter: I) -> Option<Self>;
480
481    /// Given a basis for the Algebra `A`, return the i'th basis element.
482    ///
483    /// # Safety
484    ///
485    /// The value produced by this function fundamentally depends
486    /// on the choice of basis. Care must be taken
487    /// to ensure portability if these values might ever be passed to
488    /// (or rederived within) another compilation environment where a
489    /// different basis might have been used.
490    ///
491    /// Returns `None` if `i` is greater than or equal to `DIMENSION`.
492    #[must_use]
493    #[inline]
494    fn ith_basis_element(i: usize) -> Option<Self> {
495        (i < Self::DIMENSION).then(|| Self::from_basis_coefficients_fn(|j| F::from_bool(i == j)))
496    }
497
498    /// Convert from a vector of `Self` to a vector of `F` by flattening the basis coefficients.
499    ///
500    /// Depending on the `BasedVectorSpace` this may be essentially a no-op and should certainly
501    /// be reimplemented in those cases.
502    ///
503    /// # Safety
504    ///
505    /// The value produced by this function fundamentally depends
506    /// on the choice of basis. Care must be taken
507    /// to ensure portability if these values might ever be passed to
508    /// (or rederived within) another compilation environment where a
509    /// different basis might have been used.
510    #[must_use]
511    #[inline]
512    fn flatten_to_base(vec: Vec<Self>) -> Vec<F> {
513        vec.into_iter()
514            .flat_map(|x| x.as_basis_coefficients_slice().to_vec())
515            .collect()
516    }
517
518    /// Convert from a vector of `F` to a vector of `Self` by combining the basis coefficients.
519    ///
520    /// Depending on the `BasedVectorSpace` this may be essentially a no-op and should certainly
521    /// be reimplemented in those cases.
522    ///
523    /// # Panics
524    /// This will panic if the length of `vec` is not a multiple of `Self::DIMENSION`.
525    ///
526    /// # Safety
527    ///
528    /// The value produced by this function fundamentally depends
529    /// on the choice of basis. Care must be taken
530    /// to ensure portability if these values might ever be passed to
531    /// (or rederived within) another compilation environment where a
532    /// different basis might have been used.
533    #[must_use]
534    #[inline]
535    fn reconstitute_from_base(vec: Vec<F>) -> Vec<Self>
536    where
537        F: Sync,
538        Self: Send,
539    {
540        assert_eq!(vec.len() % Self::DIMENSION, 0);
541
542        vec.par_chunks_exact(Self::DIMENSION)
543            .map(|chunk| {
544                Self::from_basis_coefficients_slice(chunk)
545                    .expect("Chunk length not equal to dimension")
546            })
547            .collect()
548    }
549}
550
551impl<F: PrimeCharacteristicRing> BasedVectorSpace<F> for F {
552    const DIMENSION: usize = 1;
553
554    #[inline]
555    fn as_basis_coefficients_slice(&self) -> &[F] {
556        slice::from_ref(self)
557    }
558
559    #[inline]
560    fn from_basis_coefficients_fn<Fn: FnMut(usize) -> F>(mut f: Fn) -> Self {
561        f(0)
562    }
563
564    #[inline]
565    fn from_basis_coefficients_iter<I: ExactSizeIterator<Item = F>>(mut iter: I) -> Option<Self> {
566        (iter.len() == 1).then(|| iter.next().unwrap()) // Unwrap will not panic as we know the length is 1.
567    }
568
569    #[inline]
570    fn flatten_to_base(vec: Vec<Self>) -> Vec<F> {
571        vec
572    }
573
574    #[inline]
575    fn reconstitute_from_base(vec: Vec<F>) -> Vec<Self> {
576        vec
577    }
578}
579
580/// A ring implements `InjectiveMonomial<N>` if the algebraic function
581/// `f(x) = x^N` is an injective map on elements of the ring.
582///
583/// We do not enforce that this map be invertible as there are useful
584/// cases such as polynomials or symbolic expressions where no inverse exists.
585///
586/// However, if the ring is a field with order `q` or an array of such field elements,
587/// then `f(x) = x^N` will be injective if and only if it is invertible and so in
588/// such cases this monomial acts as a permutation. Moreover, this will occur
589/// exactly when `N` and `q - 1` are relatively prime i.e. `gcd(N, q - 1) = 1`.
590pub trait InjectiveMonomial<const N: u64>: PrimeCharacteristicRing {
591    /// Compute `x -> x^n` for a given `n > 1` such that this
592    /// map is injective.
593    #[must_use]
594    #[inline]
595    fn injective_exp_n(&self) -> Self {
596        self.exp_const_u64::<N>()
597    }
598}
599
600/// A ring implements `PermutationMonomial<N>` if the algebraic function
601/// `f(x) = x^N` is invertible and thus acts as a permutation on elements of the ring.
602///
603/// In all cases we care about, this means that we can find another integer `K` such
604/// that `x = x^{NK}` for all elements of our ring.
605pub trait PermutationMonomial<const N: u64>: InjectiveMonomial<N> {
606    /// Compute `x -> x^K` for a given `K > 1` such that
607    /// `x^{NK} = x` for all elements `x`.
608    #[must_use]
609    fn injective_exp_root_n(&self) -> Self;
610}
611
612/// A ring `R` implements `Algebra<F>` if there is an injective homomorphism
613///  from `F` into `R`; in particular only `F::ZERO` maps to `R::ZERO`.
614///
615/// For the most part, we will usually expect `F` to be a field but there
616/// are a few cases where it is handy to allow it to just be a ring. In
617/// particular, every ring naturally implements `Algebra<Self>`.
618///
619/// ### Mathematical Description
620///
621/// Let `x` and `y` denote arbitrary elements of `F`. Then
622/// we require that our map `from` has the properties:
623/// - Preserves Identity: `from(F::ONE) = R::ONE`
624/// - Commutes with Addition: `from(x + y) = from(x) + from(y)`
625/// - Commutes with Multiplication: `from(x * y) = from(x) * from(y)`
626///
627/// Such maps are known as ring homomorphisms and are injective if the
628/// only element which maps to `R::ZERO` is `F::ZERO`.
629///
630/// The existence of this map makes `R` into an `F`-module and hence an `F`-algebra.
631/// If, additionally, `R` is a field, then this makes `R` a field extension of `F`.
632pub trait Algebra<F>:
633    PrimeCharacteristicRing
634    + From<F>
635    + Add<F, Output = Self>
636    + AddAssign<F>
637    + Sub<F, Output = Self>
638    + SubAssign<F>
639    + Mul<F, Output = Self>
640    + MulAssign<F>
641{
642}
643
644// Every ring is an algebra over itself.
645impl<R: PrimeCharacteristicRing> Algebra<R> for R {}
646
647/// A collection of methods designed to help hash field elements.
648///
649/// Most fields will want to reimplement many/all of these methods as the default implementations
650/// are slow and involve converting to/from byte representations.
651pub trait RawDataSerializable: Sized {
652    /// The number of bytes which this field element occupies in memory.
653    /// Must be equal to the length of self.into_bytes().
654    const NUM_BYTES: usize;
655
656    /// Convert a field element into a collection of bytes.
657    #[must_use]
658    fn into_bytes(self) -> impl IntoIterator<Item = u8>;
659
660    /// Convert an iterator of field elements into an iterator of bytes.
661    #[must_use]
662    fn into_byte_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u8> {
663        input.into_iter().flat_map(|elem| elem.into_bytes())
664    }
665
666    /// Convert an iterator of field elements into an iterator of u32s.
667    ///
668    /// If `NUM_BYTES` does not divide `4`, multiple `F`s may be packed together to make a single `u32`. Furthermore,
669    /// if `NUM_BYTES * input.len()` does not divide `4`, the final `u32` will involve padding bytes which are set to `0`.
670    #[must_use]
671    fn into_u32_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u32> {
672        let bytes = Self::into_byte_stream(input);
673        iter_array_chunks_padded(bytes, 0).map(u32::from_le_bytes)
674    }
675
676    /// Convert an iterator of field elements into an iterator of u64s.
677    ///
678    /// If `NUM_BYTES` does not divide `8`, multiple `F`s may be packed together to make a single `u64`. Furthermore,
679    /// if `NUM_BYTES * input.len()` does not divide `8`, the final `u64` will involve padding bytes which are set to `0`.
680    #[must_use]
681    fn into_u64_stream(input: impl IntoIterator<Item = Self>) -> impl IntoIterator<Item = u64> {
682        let bytes = Self::into_byte_stream(input);
683        iter_array_chunks_padded(bytes, 0).map(u64::from_le_bytes)
684    }
685
686    /// Convert an iterator of field element arrays into an iterator of byte arrays.
687    ///
688    /// Converts an element `[F; N]` into the byte array `[[u8; N]; NUM_BYTES]`. This is
689    /// intended for use with vectorized hash functions which use vector operations
690    /// to compute several hashes in parallel.
691    #[must_use]
692    fn into_parallel_byte_streams<const N: usize>(
693        input: impl IntoIterator<Item = [Self; N]>,
694    ) -> impl IntoIterator<Item = [u8; N]> {
695        input.into_iter().flat_map(|vector| {
696            let bytes = vector.map(|elem| elem.into_bytes().into_iter().collect::<Vec<_>>());
697            (0..Self::NUM_BYTES).map(move |i| array::from_fn(|j| bytes[j][i]))
698        })
699    }
700
701    /// Convert an iterator of field element arrays into an iterator of u32 arrays.
702    ///
703    /// Converts an element `[F; N]` into the u32 array `[[u32; N]; NUM_BYTES/4]`. This is
704    /// intended for use with vectorized hash functions which use vector operations
705    /// to compute several hashes in parallel.
706    ///
707    /// This function is guaranteed to be equivalent to starting with `Iterator<[F; N]>` performing a transpose
708    /// operation to get `[Iterator<F>; N]`, calling `into_u32_stream` on each element to get `[Iterator<u32>; N]` and then
709    /// performing another transpose operation to get `Iterator<[u32; N]>`.
710    ///
711    /// If `NUM_BYTES` does not divide `4`, multiple `[F; N]`s may be packed together to make a single `[u32; N]`. Furthermore,
712    /// if `NUM_BYTES * input.len()` does not divide `4`, the final `[u32; N]` will involve padding bytes which are set to `0`.
713    #[must_use]
714    fn into_parallel_u32_streams<const N: usize>(
715        input: impl IntoIterator<Item = [Self; N]>,
716    ) -> impl IntoIterator<Item = [u32; N]> {
717        let bytes = Self::into_parallel_byte_streams(input);
718        iter_array_chunks_padded(bytes, [0; N]).map(|byte_array: [[u8; N]; 4]| {
719            array::from_fn(|i| u32::from_le_bytes(array::from_fn(|j| byte_array[j][i])))
720        })
721    }
722
723    /// Convert an iterator of field element arrays into an iterator of u64 arrays.
724    ///
725    /// Converts an element `[F; N]` into the u64 array `[[u64; N]; NUM_BYTES/8]`. This is
726    /// intended for use with vectorized hash functions which use vector operations
727    /// to compute several hashes in parallel.
728    ///
729    /// This function is guaranteed to be equivalent to starting with `Iterator<[F; N]>` performing a transpose
730    /// operation to get `[Iterator<F>; N]`, calling `into_u64_stream` on each element to get `[Iterator<u64>; N]` and then
731    /// performing another transpose operation to get `Iterator<[u64; N]>`.
732    ///
733    /// If `NUM_BYTES` does not divide `8`, multiple `[F; N]`s may be packed together to make a single `[u64; N]`. Furthermore,
734    /// if `NUM_BYTES * input.len()` does not divide `8`, the final `[u64; N]` will involve padding bytes which are set to `0`.
735    #[must_use]
736    fn into_parallel_u64_streams<const N: usize>(
737        input: impl IntoIterator<Item = [Self; N]>,
738    ) -> impl IntoIterator<Item = [u64; N]> {
739        let bytes = Self::into_parallel_byte_streams(input);
740        iter_array_chunks_padded(bytes, [0; N]).map(|byte_array: [[u8; N]; 8]| {
741            array::from_fn(|i| u64::from_le_bytes(array::from_fn(|j| byte_array[j][i])))
742        })
743    }
744}
745
746/// A field `F`. This permits both modular fields `ℤ/p` along with their field extensions.
747///
748/// A ring is a field if every element `x` has a unique multiplicative inverse `x^{-1}`
749/// which satisfies `x * x^{-1} = F::ONE`.
750pub trait Field:
751    Algebra<Self>
752    + RawDataSerializable
753    + Packable
754    + 'static
755    + Copy
756    + Div<Self, Output = Self>
757    + DivAssign
758    + Add<Self::Packing, Output = Self::Packing>
759    + Sub<Self::Packing, Output = Self::Packing>
760    + Mul<Self::Packing, Output = Self::Packing>
761    + Eq
762    + Hash
763    + Send
764    + Sync
765    + Display
766    + Serialize
767    + DeserializeOwned
768{
769    type Packing: PackedField<Scalar = Self>;
770
771    /// A generator of this field's multiplicative group.
772    const GENERATOR: Self;
773
774    /// Check if the given field element is equal to the unique additive identity (ZERO).
775    #[must_use]
776    #[inline]
777    fn is_zero(&self) -> bool {
778        *self == Self::ZERO
779    }
780
781    /// Check if the given field element is equal to the unique multiplicative identity (ONE).
782    #[must_use]
783    #[inline]
784    fn is_one(&self) -> bool {
785        *self == Self::ONE
786    }
787
788    /// The multiplicative inverse of this field element, if it exists.
789    ///
790    /// NOTE: The inverse of `0` is undefined and will return `None`.
791    #[must_use]
792    fn try_inverse(&self) -> Option<Self>;
793
794    /// The multiplicative inverse of this field element.
795    ///
796    /// # Panics
797    /// The function will panic if the field element is `0`.
798    /// Use try_inverse if you want to handle this case.
799    #[must_use]
800    fn inverse(&self) -> Self {
801        self.try_inverse().expect("Tried to invert zero")
802    }
803
804    /// Add two slices of field elements together, returning the result in the first slice.
805    ///
806    /// Makes use of packing to speed up the addition.
807    ///
808    /// This is optimal for cases where the two slices are small to medium length. E.g. between
809    /// `F::Packing::WIDTH` and roughly however many elements fit in a cache line.
810    ///
811    /// For larger slices, it's likely worthwhile to use parallelization before calling this.
812    /// Similarly if you need to add a large number of slices together, it's best to
813    /// break them into small chunks and call this on the smaller chunks.
814    ///
815    /// # Panics
816    /// The function will panic if the lengths of the two slices are not equal.
817    #[inline]
818    fn add_slices(slice_1: &mut [Self], slice_2: &[Self]) {
819        let (shorts_1, suffix_1) = Self::Packing::pack_slice_with_suffix_mut(slice_1);
820        let (shorts_2, suffix_2) = Self::Packing::pack_slice_with_suffix(slice_2);
821        debug_assert_eq!(shorts_1.len(), shorts_2.len());
822        debug_assert_eq!(suffix_1.len(), suffix_2.len());
823        for (x_1, &x_2) in shorts_1.iter_mut().zip(shorts_2) {
824            *x_1 += x_2;
825        }
826        for (x_1, &x_2) in suffix_1.iter_mut().zip(suffix_2) {
827            *x_1 += x_2;
828        }
829    }
830
831    /// The number of elements in the field.
832    ///
833    /// This will either be prime if the field is a PrimeField or a power of a
834    /// prime if the field is an extension field.
835    #[must_use]
836    fn order() -> BigUint;
837
838    /// The number of bits required to define an element of this field.
839    ///
840    /// Usually due to storage and practical reasons the memory size of
841    /// a field element will be a little larger than bits().
842    #[must_use]
843    #[inline]
844    fn bits() -> usize {
845        Self::order().bits() as usize
846    }
847}
848
849/// A field isomorphic to `ℤ/p` for some prime `p`.
850///
851/// There is a natural map from `ℤ` to `ℤ/p` which sends an integer `r` to its conjugacy class `[r]`.
852/// Canonically, each conjugacy class `[r]` can be represented by the unique integer `s` in `[0, p - 1)`
853/// satisfying `s = r mod p`. This however is often not the most convenient computational representation
854/// and so internal representations of field elements might differ from this and may change over time.
855pub trait PrimeField:
856    Field
857    + Ord
858    + QuotientMap<u8>
859    + QuotientMap<u16>
860    + QuotientMap<u32>
861    + QuotientMap<u64>
862    + QuotientMap<u128>
863    + QuotientMap<usize>
864    + QuotientMap<i8>
865    + QuotientMap<i16>
866    + QuotientMap<i32>
867    + QuotientMap<i64>
868    + QuotientMap<i128>
869    + QuotientMap<isize>
870{
871    /// Return the representative of `value` in canonical form
872    /// which lies in the range `0 <= x < self.order()`.
873    #[must_use]
874    fn as_canonical_biguint(&self) -> BigUint;
875}
876
877/// A prime field `ℤ/p` with order, `p < 2^64`.
878pub trait PrimeField64: PrimeField {
879    const ORDER_U64: u64;
880
881    /// Return the representative of `value` in canonical form
882    /// which lies in the range `0 <= x < ORDER_U64`.
883    #[must_use]
884    fn as_canonical_u64(&self) -> u64;
885
886    /// Convert a field element to a `u64` such that any two field elements
887    /// are converted to the same `u64` if and only if they represent the same value.
888    ///
889    /// This will be the fastest way to convert a field element to a `u64` and
890    /// is intended for use in hashing. It will also be consistent across different targets.
891    #[must_use]
892    #[inline(always)]
893    fn to_unique_u64(&self) -> u64 {
894        // A simple default which is optimal for some fields.
895        self.as_canonical_u64()
896    }
897}
898
899/// A prime field `ℤ/p` with order `p < 2^32`.
900pub trait PrimeField32: PrimeField64 {
901    const ORDER_U32: u32;
902
903    /// Return the representative of `value` in canonical form
904    /// which lies in the range `0 <= x < ORDER_U64`.
905    #[must_use]
906    fn as_canonical_u32(&self) -> u32;
907
908    /// Convert a field element to a `u32` such that any two field elements
909    /// are converted to the same `u32` if and only if they represent the same value.
910    ///
911    /// This will be the fastest way to convert a field element to a `u32` and
912    /// is intended for use in hashing. It will also be consistent across different targets.
913    #[must_use]
914    #[inline(always)]
915    fn to_unique_u32(&self) -> u32 {
916        // A simple default which is optimal for some fields.
917        self.as_canonical_u32()
918    }
919}
920
921/// A field `EF` which is also an algebra over a field `F`.
922///
923/// This provides a couple of convenience methods on top of the
924/// standard methods provided by `Field`, `Algebra<F>` and `BasedVectorSpace<F>`.
925///
926/// It also provides a type which handles packed vectors of extension field elements.
927pub trait ExtensionField<Base: Field>: Field + Algebra<Base> + BasedVectorSpace<Base> {
928    type ExtensionPacking: PackedFieldExtension<Base, Self> + 'static + Copy + Send + Sync;
929
930    /// Determine if the given element lies in the base field.
931    #[must_use]
932    fn is_in_basefield(&self) -> bool;
933
934    /// If the element lies in the base field project it down.
935    /// Otherwise return None.
936    #[must_use]
937    fn as_base(&self) -> Option<Base>;
938}
939
940// Every field is trivially a one dimensional extension over itself.
941impl<F: Field> ExtensionField<F> for F {
942    type ExtensionPacking = F::Packing;
943
944    #[inline]
945    fn is_in_basefield(&self) -> bool {
946        true
947    }
948
949    #[inline]
950    fn as_base(&self) -> Option<F> {
951        Some(*self)
952    }
953}
954
955/// A field which supplies information like the two-adicity of its multiplicative group, and methods
956/// for obtaining two-adic generators.
957pub trait TwoAdicField: Field {
958    /// The number of factors of two in this field's multiplicative group.
959    const TWO_ADICITY: usize;
960
961    /// Returns a generator of the multiplicative group of order `2^bits`.
962    /// Assumes `bits <= TWO_ADICITY`, otherwise the result is undefined.
963    #[must_use]
964    fn two_adic_generator(bits: usize) -> Self;
965}
966
967/// An iterator which returns the powers of a base element `b` shifted by current `c`: `c, c * b, c * b^2, ...`.
968#[derive(Clone, Debug)]
969pub struct Powers<R: PrimeCharacteristicRing> {
970    pub base: R,
971    pub current: R,
972}
973
974impl<R: PrimeCharacteristicRing> Iterator for Powers<R> {
975    type Item = R;
976
977    fn next(&mut self) -> Option<R> {
978        let result = self.current.clone();
979        self.current *= self.base.clone();
980        Some(result)
981    }
982}
983
984impl<R: PrimeCharacteristicRing> Powers<R> {
985    /// Returns an iterator yielding the first `n` powers.
986    #[inline]
987    #[must_use]
988    pub const fn take(self, n: usize) -> BoundedPowers<R> {
989        BoundedPowers { iter: self, n }
990    }
991
992    /// Fills `slice` with the next `slice.len()` powers yielded by the iterator.
993    #[inline]
994    pub fn fill(self, slice: &mut [R]) {
995        slice
996            .iter_mut()
997            .zip(self)
998            .for_each(|(out, next)| *out = next);
999    }
1000
1001    /// Wrapper for `self.take(n).collect()`.
1002    #[inline]
1003    #[must_use]
1004    pub fn collect_n(self, n: usize) -> Vec<R> {
1005        self.take(n).collect()
1006    }
1007}
1008
1009impl<F: Field> BoundedPowers<F> {
1010    /// Collect exactly `num_powers` ascending powers of `self.base`, starting at `self.current`.
1011    ///
1012    /// # Details
1013    ///
1014    /// The computation is split evenly amongst available threads, and each chunk is computed
1015    /// using packed fields.
1016    ///
1017    /// # Performance
1018    ///
1019    /// Enable the `parallel` feature to enable parallelization.
1020    #[must_use]
1021    pub fn collect(self) -> Vec<F> {
1022        let num_powers = self.n;
1023
1024        // When num_powers is small, fallback to serial computation
1025        if num_powers < 16 {
1026            return self.take(num_powers).collect();
1027        }
1028
1029        // Allocate buffer storing packed powers, containing at least `num_powers` scalars.
1030        let width = F::Packing::WIDTH;
1031        let num_packed = num_powers.div_ceil(width);
1032        let mut points_packed = F::Packing::zero_vec(num_packed);
1033
1034        // Split computation evenly among threads
1035        let num_threads = current_num_threads().max(1);
1036        let chunk_size = num_packed.div_ceil(num_threads);
1037
1038        // Precompute base for each chunk.
1039        let base = self.iter.base;
1040        let chunk_base = base.exp_u64((chunk_size * width) as u64);
1041        let shift = self.iter.current;
1042
1043        points_packed
1044            .par_chunks_mut(chunk_size)
1045            .enumerate()
1046            .for_each(|(chunk_idx, chunk_slice)| {
1047                // First power in this chunk
1048                let chunk_start = shift * chunk_base.exp_u64(chunk_idx as u64);
1049
1050                // Fill the chunk with packed powers.
1051                F::Packing::packed_shifted_powers(base, chunk_start).fill(chunk_slice);
1052            });
1053
1054        // return the number of requested points, discarding the unused packed powers
1055        // SAFETY: size_of::<F::Packing> always divides size_of::<F::Packing>.
1056        let mut points = unsafe { flatten_to_base(points_packed) };
1057        points.truncate(num_powers);
1058        points
1059    }
1060}
1061
1062/// Same as [`Powers`], but returns a bounded number of powers.
1063#[derive(Clone, Debug)]
1064pub struct BoundedPowers<R: PrimeCharacteristicRing> {
1065    iter: Powers<R>,
1066    n: usize,
1067}
1068
1069impl<R: PrimeCharacteristicRing> Iterator for BoundedPowers<R> {
1070    type Item = R;
1071
1072    fn next(&mut self) -> Option<R> {
1073        (self.n != 0).then(|| {
1074            self.n -= 1;
1075            self.iter.next().unwrap()
1076        })
1077    }
1078}