itertools/combinations_with_replacement.rs
1use alloc::boxed::Box;
2use alloc::vec::Vec;
3use std::fmt;
4use std::iter::FusedIterator;
5
6use super::lazy_buffer::LazyBuffer;
7use crate::adaptors::checked_binomial;
8
9/// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement.
10///
11/// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement)
12/// for more information.
13#[derive(Clone)]
14#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
15pub struct CombinationsWithReplacement<I>
16where
17 I: Iterator,
18 I::Item: Clone,
19{
20 indices: Box<[usize]>,
21 pool: LazyBuffer<I>,
22 first: bool,
23}
24
25impl<I> fmt::Debug for CombinationsWithReplacement<I>
26where
27 I: Iterator + fmt::Debug,
28 I::Item: fmt::Debug + Clone,
29{
30 debug_fmt_fields!(CombinationsWithReplacement, indices, pool, first);
31}
32
33/// Create a new `CombinationsWithReplacement` from a clonable iterator.
34pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I>
35where
36 I: Iterator,
37 I::Item: Clone,
38{
39 let indices = alloc::vec![0; k].into_boxed_slice();
40 let pool: LazyBuffer<I> = LazyBuffer::new(iter);
41
42 CombinationsWithReplacement {
43 indices,
44 pool,
45 first: true,
46 }
47}
48
49impl<I> CombinationsWithReplacement<I>
50where
51 I: Iterator,
52 I::Item: Clone,
53{
54 /// Increments indices representing the combination to advance to the next
55 /// (in lexicographic order by increasing sequence) combination.
56 ///
57 /// Returns true if we've run out of combinations, false otherwise.
58 fn increment_indices(&mut self) -> bool {
59 // Check if we need to consume more from the iterator
60 // This will run while we increment our first index digit
61 self.pool.get_next();
62
63 // Work out where we need to update our indices
64 let mut increment = None;
65 for (i, indices_int) in self.indices.iter().enumerate().rev() {
66 if *indices_int < self.pool.len() - 1 {
67 increment = Some((i, indices_int + 1));
68 break;
69 }
70 }
71 match increment {
72 // If we can update the indices further
73 Some((increment_from, increment_value)) => {
74 // We need to update the rightmost non-max value
75 // and all those to the right
76 for i in &mut self.indices[increment_from..] {
77 *i = increment_value;
78 }
79 // TODO: once MSRV >= 1.50, use `fill` instead:
80 // self.indices[increment_from..].fill(increment_value);
81 false
82 }
83 // Otherwise, we're done
84 None => true,
85 }
86 }
87}
88
89impl<I> Iterator for CombinationsWithReplacement<I>
90where
91 I: Iterator,
92 I::Item: Clone,
93{
94 type Item = Vec<I::Item>;
95
96 fn next(&mut self) -> Option<Self::Item> {
97 if self.first {
98 // In empty edge cases, stop iterating immediately
99 if !(self.indices.is_empty() || self.pool.get_next()) {
100 return None;
101 }
102 self.first = false;
103 } else if self.increment_indices() {
104 return None;
105 }
106 Some(self.pool.get_at(&self.indices))
107 }
108
109 fn nth(&mut self, n: usize) -> Option<Self::Item> {
110 if self.first {
111 // In empty edge cases, stop iterating immediately
112 if !(self.indices.is_empty() || self.pool.get_next()) {
113 return None;
114 }
115 self.first = false;
116 } else if self.increment_indices() {
117 return None;
118 }
119 for _ in 0..n {
120 if self.increment_indices() {
121 return None;
122 }
123 }
124 Some(self.pool.get_at(&self.indices))
125 }
126
127 fn size_hint(&self) -> (usize, Option<usize>) {
128 let (mut low, mut upp) = self.pool.size_hint();
129 low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX);
130 upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices));
131 (low, upp)
132 }
133
134 fn count(self) -> usize {
135 let Self {
136 indices,
137 pool,
138 first,
139 } = self;
140 let n = pool.count();
141 remaining_for(n, first, &indices).unwrap()
142 }
143}
144
145impl<I> FusedIterator for CombinationsWithReplacement<I>
146where
147 I: Iterator,
148 I::Item: Clone,
149{
150}
151
152/// For a given size `n`, return the count of remaining combinations with replacement or None if it would overflow.
153fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
154 // With a "stars and bars" representation, choose k values with replacement from n values is
155 // like choosing k out of k + n − 1 positions (hence binomial(k + n - 1, k) possibilities)
156 // to place k stars and therefore n - 1 bars.
157 // Example (n=4, k=6): ***|*||** represents [0,0,0,1,3,3].
158 let count = |n: usize, k: usize| {
159 let positions = if n == 0 {
160 k.saturating_sub(1)
161 } else {
162 (n - 1).checked_add(k)?
163 };
164 checked_binomial(positions, k)
165 };
166 let k = indices.len();
167 if first {
168 count(n, k)
169 } else {
170 // The algorithm is similar to the one for combinations *without replacement*,
171 // except we choose values *with replacement* and indices are *non-strictly* monotonically sorted.
172
173 // The combinations generated after the current one can be counted by counting as follows:
174 // - The subsequent combinations that differ in indices[0]:
175 // If subsequent combinations differ in indices[0], then their value for indices[0]
176 // must be at least 1 greater than the current indices[0].
177 // As indices is monotonically sorted, this means we can effectively choose k values with
178 // replacement from (n - 1 - indices[0]), leading to count(n - 1 - indices[0], k) possibilities.
179 // - The subsequent combinations with same indices[0], but differing indices[1]:
180 // Here we can choose k - 1 values with replacement from (n - 1 - indices[1]) values,
181 // leading to count(n - 1 - indices[1], k - 1) possibilities.
182 // - (...)
183 // - The subsequent combinations with same indices[0..=i], but differing indices[i]:
184 // Here we can choose k - i values with replacement from (n - 1 - indices[i]) values: count(n - 1 - indices[i], k - i).
185 // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
186
187 // Below, `n0` resembles indices[i].
188 indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
189 sum.checked_add(count(n - 1 - *n0, k - i)?)
190 })
191 }
192}