itertools/
combinations_with_replacement.rs

1use alloc::boxed::Box;
2use alloc::vec::Vec;
3use std::fmt;
4use std::iter::FusedIterator;
5
6use super::lazy_buffer::LazyBuffer;
7use crate::adaptors::checked_binomial;
8
9/// An iterator to iterate through all the `n`-length combinations in an iterator, with replacement.
10///
11/// See [`.combinations_with_replacement()`](crate::Itertools::combinations_with_replacement)
12/// for more information.
13#[derive(Clone)]
14#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
15pub struct CombinationsWithReplacement<I>
16where
17    I: Iterator,
18    I::Item: Clone,
19{
20    indices: Box<[usize]>,
21    pool: LazyBuffer<I>,
22    first: bool,
23}
24
25impl<I> fmt::Debug for CombinationsWithReplacement<I>
26where
27    I: Iterator + fmt::Debug,
28    I::Item: fmt::Debug + Clone,
29{
30    debug_fmt_fields!(CombinationsWithReplacement, indices, pool, first);
31}
32
33/// Create a new `CombinationsWithReplacement` from a clonable iterator.
34pub fn combinations_with_replacement<I>(iter: I, k: usize) -> CombinationsWithReplacement<I>
35where
36    I: Iterator,
37    I::Item: Clone,
38{
39    let indices = alloc::vec![0; k].into_boxed_slice();
40    let pool: LazyBuffer<I> = LazyBuffer::new(iter);
41
42    CombinationsWithReplacement {
43        indices,
44        pool,
45        first: true,
46    }
47}
48
49impl<I> CombinationsWithReplacement<I>
50where
51    I: Iterator,
52    I::Item: Clone,
53{
54    /// Increments indices representing the combination to advance to the next
55    /// (in lexicographic order by increasing sequence) combination.
56    ///
57    /// Returns true if we've run out of combinations, false otherwise.
58    fn increment_indices(&mut self) -> bool {
59        // Check if we need to consume more from the iterator
60        // This will run while we increment our first index digit
61        self.pool.get_next();
62
63        // Work out where we need to update our indices
64        let mut increment = None;
65        for (i, indices_int) in self.indices.iter().enumerate().rev() {
66            if *indices_int < self.pool.len() - 1 {
67                increment = Some((i, indices_int + 1));
68                break;
69            }
70        }
71        match increment {
72            // If we can update the indices further
73            Some((increment_from, increment_value)) => {
74                // We need to update the rightmost non-max value
75                // and all those to the right
76                for i in &mut self.indices[increment_from..] {
77                    *i = increment_value;
78                }
79                // TODO: once MSRV >= 1.50, use `fill` instead:
80                // self.indices[increment_from..].fill(increment_value);
81                false
82            }
83            // Otherwise, we're done
84            None => true,
85        }
86    }
87}
88
89impl<I> Iterator for CombinationsWithReplacement<I>
90where
91    I: Iterator,
92    I::Item: Clone,
93{
94    type Item = Vec<I::Item>;
95
96    fn next(&mut self) -> Option<Self::Item> {
97        if self.first {
98            // In empty edge cases, stop iterating immediately
99            if !(self.indices.is_empty() || self.pool.get_next()) {
100                return None;
101            }
102            self.first = false;
103        } else if self.increment_indices() {
104            return None;
105        }
106        Some(self.pool.get_at(&self.indices))
107    }
108
109    fn nth(&mut self, n: usize) -> Option<Self::Item> {
110        if self.first {
111            // In empty edge cases, stop iterating immediately
112            if !(self.indices.is_empty() || self.pool.get_next()) {
113                return None;
114            }
115            self.first = false;
116        } else if self.increment_indices() {
117            return None;
118        }
119        for _ in 0..n {
120            if self.increment_indices() {
121                return None;
122            }
123        }
124        Some(self.pool.get_at(&self.indices))
125    }
126
127    fn size_hint(&self) -> (usize, Option<usize>) {
128        let (mut low, mut upp) = self.pool.size_hint();
129        low = remaining_for(low, self.first, &self.indices).unwrap_or(usize::MAX);
130        upp = upp.and_then(|upp| remaining_for(upp, self.first, &self.indices));
131        (low, upp)
132    }
133
134    fn count(self) -> usize {
135        let Self {
136            indices,
137            pool,
138            first,
139        } = self;
140        let n = pool.count();
141        remaining_for(n, first, &indices).unwrap()
142    }
143}
144
145impl<I> FusedIterator for CombinationsWithReplacement<I>
146where
147    I: Iterator,
148    I::Item: Clone,
149{
150}
151
152/// For a given size `n`, return the count of remaining combinations with replacement or None if it would overflow.
153fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
154    // With a "stars and bars" representation, choose k values with replacement from n values is
155    // like choosing k out of k + n − 1 positions (hence binomial(k + n - 1, k) possibilities)
156    // to place k stars and therefore n - 1 bars.
157    // Example (n=4, k=6): ***|*||** represents [0,0,0,1,3,3].
158    let count = |n: usize, k: usize| {
159        let positions = if n == 0 {
160            k.saturating_sub(1)
161        } else {
162            (n - 1).checked_add(k)?
163        };
164        checked_binomial(positions, k)
165    };
166    let k = indices.len();
167    if first {
168        count(n, k)
169    } else {
170        // The algorithm is similar to the one for combinations *without replacement*,
171        // except we choose values *with replacement* and indices are *non-strictly* monotonically sorted.
172
173        // The combinations generated after the current one can be counted by counting as follows:
174        // - The subsequent combinations that differ in indices[0]:
175        //   If subsequent combinations differ in indices[0], then their value for indices[0]
176        //   must be at least 1 greater than the current indices[0].
177        //   As indices is monotonically sorted, this means we can effectively choose k values with
178        //   replacement from (n - 1 - indices[0]), leading to count(n - 1 - indices[0], k) possibilities.
179        // - The subsequent combinations with same indices[0], but differing indices[1]:
180        //   Here we can choose k - 1 values with replacement from (n - 1 - indices[1]) values,
181        //   leading to count(n - 1 - indices[1], k - 1) possibilities.
182        // - (...)
183        // - The subsequent combinations with same indices[0..=i], but differing indices[i]:
184        //   Here we can choose k - i values with replacement from (n - 1 - indices[i]) values: count(n - 1 - indices[i], k - i).
185        //   Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.
186
187        // Below, `n0` resembles indices[i].
188        indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
189            sum.checked_add(count(n - 1 - *n0, k - i)?)
190        })
191    }
192}