blake3/hazmat.rs
1//! Low-level tree manipulations and other sharp tools
2//!
3//! The target audience for this module is projects like [Bao](https://github.com/oconnor663/bao),
4//! which work directly with the interior hashes ("chaining values") of BLAKE3 chunks and subtrees.
5//! For example, you could use these functions to implement a BitTorrent-like protocol using the
6//! BLAKE3 tree structure, or to hash an input that's distributed across different machines. These
7//! use cases are advanced, and most applications don't need this module. Also:
8//!
9//! <div class="warning">
10//!
11//! **Warning:** This module is *hazardous material*. If you've heard folks say *don't roll your
12//! own crypto,* this is the sort of thing they're talking about. These functions have complicated
13//! requirements, and any mistakes will give you garbage output and/or break the security
14//! properties that BLAKE3 is supposed to have. Read section 2.1 of [the BLAKE3
15//! paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf) to understand the
16//! tree structure you need to maintain. Test your code against [`blake3::hash`](../fn.hash.html)
17//! and make sure you can get the same outputs for [lots of different
18//! inputs](https://github.com/BLAKE3-team/BLAKE3/blob/master/test_vectors/test_vectors.json).
19//!
20//! </div>
21//!
22//! On the other hand:
23//!
24//! <div class="warning">
25//!
26//! **Encouragement:** Playing with these functions is a great way to learn how BLAKE3 works on the
27//! inside. Have fun!
28//!
29//! </div>
30//!
31//! The main entrypoint for this module is the [`HasherExt`] trait, particularly the
32//! [`set_input_offset`](HasherExt::set_input_offset) and
33//! [`finalize_non_root`](HasherExt::finalize_non_root) methods. These let you compute the chaining
34//! values of individual chunks or subtrees. You then combine these chaining values into larger
35//! subtrees using [`merge_subtrees_non_root`] and finally (once at the very top)
36//! [`merge_subtrees_root`] or [`merge_subtrees_root_xof`].
37//!
38//! # Examples
39//!
40//! Here's an example of computing all the interior hashes in a 3-chunk tree:
41//!
42//! ```text
43//! root
44//! / \
45//! parent \
46//! / \ \
47//! chunk0 chunk1 chunk2
48//! ```
49//!
50//! ```
51//! # fn main() {
52//! use blake3::{Hasher, CHUNK_LEN};
53//! use blake3::hazmat::{merge_subtrees_non_root, merge_subtrees_root, Mode};
54//! use blake3::hazmat::HasherExt; // an extension trait for Hasher
55//!
56//! let chunk0 = [b'a'; CHUNK_LEN];
57//! let chunk1 = [b'b'; CHUNK_LEN];
58//! let chunk2 = [b'c'; 42]; // The final chunk can be short.
59//!
60//! // Compute the non-root hashes ("chaining values") of all three chunks. Chunks or subtrees
61//! // that don't begin at the start of the input use `set_input_offset` to say where they begin.
62//! let chunk0_cv = Hasher::new()
63//! // .set_input_offset(0) is the default.
64//! .update(&chunk0)
65//! .finalize_non_root();
66//! let chunk1_cv = Hasher::new()
67//! .set_input_offset(CHUNK_LEN as u64)
68//! .update(&chunk1)
69//! .finalize_non_root();
70//! let chunk2_cv = Hasher::new()
71//! .set_input_offset(2 * CHUNK_LEN as u64)
72//! .update(&chunk2)
73//! .finalize_non_root();
74//!
75//! // Join the first two chunks with a non-root parent node and compute its chaining value.
76//! let parent_cv = merge_subtrees_non_root(&chunk0_cv, &chunk1_cv, Mode::Hash);
77//!
78//! // Join that parent node and the third chunk with a root parent node and compute the hash.
79//! let root_hash = merge_subtrees_root(&parent_cv, &chunk2_cv, Mode::Hash);
80//!
81//! // Double check that we got the right answer.
82//! let mut combined_input = Vec::new();
83//! combined_input.extend_from_slice(&chunk0);
84//! combined_input.extend_from_slice(&chunk1);
85//! combined_input.extend_from_slice(&chunk2);
86//! assert_eq!(root_hash, blake3::hash(&combined_input));
87//! # }
88//! ```
89//!
90//! Hashing many chunks together is important for performance, because it allows the implementation
91//! to use SIMD parallelism internally. ([AVX-512](https://en.wikipedia.org/wiki/AVX-512) for
92//! example needs 16 chunks to really get going.) We can reproduce `parent_cv` by hashing `chunk0`
93//! and `chunk1` at the same time:
94//!
95//! ```
96//! # fn main() {
97//! # use blake3::{Hasher, CHUNK_LEN};
98//! # use blake3::hazmat::{Mode, HasherExt, merge_subtrees_non_root, merge_subtrees_root};
99//! # let chunk0 = [b'a'; CHUNK_LEN];
100//! # let chunk1 = [b'b'; CHUNK_LEN];
101//! # let chunk0_cv = Hasher::new().update(&chunk0).finalize_non_root();
102//! # let chunk1_cv = Hasher::new().set_input_offset(CHUNK_LEN as u64).update(&chunk1).finalize_non_root();
103//! # let parent_cv = merge_subtrees_non_root(&chunk0_cv, &chunk1_cv, Mode::Hash);
104//! # let mut combined_input = Vec::new();
105//! # combined_input.extend_from_slice(&chunk0);
106//! # combined_input.extend_from_slice(&chunk1);
107//! let left_subtree_cv = Hasher::new()
108//! // .set_input_offset(0) is the default.
109//! .update(&combined_input[..2 * CHUNK_LEN])
110//! .finalize_non_root();
111//! assert_eq!(left_subtree_cv, parent_cv);
112//!
113//! // Using multiple updates gives the same answer, though it's not as efficient.
114//! let mut subtree_hasher = Hasher::new();
115//! // Again, .set_input_offset(0) is the default.
116//! subtree_hasher.update(&chunk0);
117//! subtree_hasher.update(&chunk1);
118//! assert_eq!(left_subtree_cv, subtree_hasher.finalize_non_root());
119//! # }
120//! ```
121//!
122//! However, hashing multiple chunks together **must** respect the overall tree structure. Hashing
123//! `chunk0` and `chunk1` together is valid, but hashing `chunk1` and `chunk2` together is
124//! incorrect and gives a garbage result that will never match a standard BLAKE3 hash. The
125//! implementation includes a few best-effort asserts to catch some of these mistakes, but these
126//! checks aren't guaranteed. For example, this second call to `update` currently panics:
127//!
128//! ```should_panic
129//! # fn main() {
130//! # use blake3::{Hasher, CHUNK_LEN};
131//! # use blake3::hazmat::HasherExt;
132//! # let chunk0 = [b'a'; CHUNK_LEN];
133//! # let chunk1 = [b'b'; CHUNK_LEN];
134//! # let chunk2 = [b'c'; 42];
135//! let oops = Hasher::new()
136//! .set_input_offset(CHUNK_LEN as u64)
137//! .update(&chunk1)
138//! // PANIC: "the subtree starting at 1024 contains at most 1024 bytes"
139//! .update(&chunk2)
140//! .finalize_non_root();
141//! # }
142//! ```
143//!
144//! For more on valid tree structures, see the docs for and [`left_subtree_len`] and
145//! [`max_subtree_len`], and see section 2.1 of [the BLAKE3
146//! paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf). Note that the
147//! merging functions ([`merge_subtrees_root`] and friends) don't know the shape of the left and
148//! right subtrees you're giving them, and they can't help you catch mistakes. The best way to
149//! catch mistakes with these is to compare your root output to the [`blake3::hash`](crate::hash)
150//! of the same input.
151
152use crate::platform::Platform;
153use crate::{CVWords, Hasher, CHUNK_LEN, IV, KEY_LEN, OUT_LEN};
154
155/// Extension methods for [`Hasher`]. This is the main entrypoint to the `hazmat` module.
156pub trait HasherExt {
157 /// Similar to [`Hasher::new_derive_key`] but using a pre-hashed [`ContextKey`] from
158 /// [`hash_derive_key_context`].
159 ///
160 /// The [`hash_derive_key_context`] function is _only_ valid source of the [`ContextKey`]
161 ///
162 /// # Example
163 ///
164 /// ```
165 /// use blake3::Hasher;
166 /// use blake3::hazmat::HasherExt;
167 ///
168 /// let context_key = blake3::hazmat::hash_derive_key_context("foo");
169 /// let mut hasher = Hasher::new_from_context_key(&context_key);
170 /// hasher.update(b"bar");
171 /// let derived_key = *hasher.finalize().as_bytes();
172 ///
173 /// assert_eq!(derived_key, blake3::derive_key("foo", b"bar"));
174 /// ```
175 fn new_from_context_key(context_key: &ContextKey) -> Self;
176
177 /// Configure the `Hasher` to process a chunk or subtree starting at `offset` bytes into the
178 /// whole input.
179 ///
180 /// You must call this function before processing any input with [`update`](Hasher::update) or
181 /// similar. This step isn't required for the first chunk, or for a subtree that includes the
182 /// first chunk (i.e. when the `offset` is zero), but it's required for all other chunks and
183 /// subtrees.
184 ///
185 /// The starting input offset of a subtree implies a maximum possible length for that subtree.
186 /// See [`max_subtree_len`] and section 2.1 of [the BLAKE3
187 /// paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf). Note that only
188 /// subtrees along the right edge of the whole tree can have a length less than their maximum
189 /// possible length.
190 ///
191 /// See the [module level examples](index.html#examples).
192 ///
193 /// # Panics
194 ///
195 /// This function panics if the `Hasher` has already accepted any input with
196 /// [`update`](Hasher::update) or similar.
197 ///
198 /// This should always be paired with [`finalize_non_root`](HasherExt::finalize_non_root). It's
199 /// never correct to use a non-zero input offset with [`finalize`](Hasher::finalize) or
200 /// [`finalize_xof`](Hasher::finalize_xof). The `offset` must also be a multiple of
201 /// `CHUNK_LEN`. Violating either of these rules will currently fail an assertion and panic,
202 /// but this is not guaranteed.
203 fn set_input_offset(&mut self, offset: u64) -> &mut Self;
204
205 /// Finalize the non-root hash ("chaining value") of the current chunk or subtree.
206 ///
207 /// Afterwards you can merge subtree chaining values into parent nodes using
208 /// [`merge_subtrees_non_root`] and ultimately into the root node with either
209 /// [`merge_subtrees_root`] (similar to [`Hasher::finalize`]) or [`merge_subtrees_root_xof`]
210 /// (similar to [`Hasher::finalize_xof`]).
211 ///
212 /// See the [module level examples](index.html#examples), particularly the discussion of valid
213 /// tree structures.
214 fn finalize_non_root(&self) -> ChainingValue;
215}
216
217impl HasherExt for Hasher {
218 fn new_from_context_key(context_key: &[u8; KEY_LEN]) -> Hasher {
219 let context_key_words = crate::platform::words_from_le_bytes_32(context_key);
220 Hasher::new_internal(&context_key_words, crate::DERIVE_KEY_MATERIAL)
221 }
222
223 fn set_input_offset(&mut self, offset: u64) -> &mut Hasher {
224 assert_eq!(self.count(), 0, "hasher has already accepted input");
225 assert_eq!(
226 offset % CHUNK_LEN as u64,
227 0,
228 "offset ({offset}) must be a chunk boundary (divisible by {CHUNK_LEN})",
229 );
230 let counter = offset / CHUNK_LEN as u64;
231 self.chunk_state.chunk_counter = counter;
232 self.initial_chunk_counter = counter;
233 self
234 }
235
236 fn finalize_non_root(&self) -> ChainingValue {
237 assert_ne!(self.count(), 0, "empty subtrees are never valid");
238 self.final_output().chaining_value()
239 }
240}
241
242/// The maximum length of a subtree in bytes, given its starting offset in bytes
243///
244/// If you try to hash more than this many bytes as one subtree, you'll end up merging parent nodes
245/// that shouldn't be merged, and your output will be garbage. [`Hasher::update`] will currently
246/// panic in this case, but this is not guaranteed.
247///
248/// For input offset zero (the default), there is no maximum length, and this function returns
249/// `None`. For all other offsets it returns `Some`. Note that valid offsets must be a multiple of
250/// [`CHUNK_LEN`] (1024); it's not possible to start hashing a chunk in the middle.
251///
252/// In the example tree below, chunks are numbered by their _0-based index_. The subtree that
253/// _starts_ with chunk 3, i.e. `input_offset = 3 * CHUNK_LEN`, includes only that one chunk, so
254/// its max length is `Some(CHUNK_LEN)`. The subtree that starts with chunk 6 includes chunk 7 but
255/// not chunk 8, so its max length is `Some(2 * CHUNK_LEN)`. The subtree that starts with chunk 12
256/// includes chunks 13, 14, and 15, but if the tree were bigger it would not include chunk 16, so
257/// its max length is `Some(4 * CHUNK_LEN)`. One way to think about the rule here is that, if you
258/// go beyond the max subtree length from a given starting offset, you start dealing with subtrees
259/// that include chunks _to the left_ of where you started.
260///
261/// ```text
262/// root
263/// / \
264/// . .
265/// / \ / \
266/// . . . .
267/// / \ / \ / \ / \
268/// . . . . . . . .
269/// / \ / \ / \ / \ / \ / \ / \ / \
270/// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
271/// ```
272///
273/// The general rule turns out to be that for a subtree starting at a 0-based chunk index N greater
274/// than zero, the maximum number of chunks in that subtree is the largest power-of-two that
275/// divides N, which is given by `1 << N.trailing_zeros()`.
276///
277/// This function can be useful for writing tests or debug assertions, but it's actually rare to
278/// use this for real control flow. Callers who split their input recursively using
279/// [`left_subtree_len`] will automatically satisfy the `max_subtree_len` bound and don't
280/// necessarily need to check. It's also common to choose some fixed power-of-two subtree size, say
281/// 64 chunks, and divide your input up into slices of that fixed length (with the final slice
282/// possibly short). This approach also automatically satisfies the `max_subtree_len` bound and
283/// doesn't need to check. Proving that this is true can be an interesting exercise. Note that
284/// chunks 0, 4, 8, and 12 all begin subtrees of at least 4 chunks in the example tree above.
285///
286/// # Panics
287///
288/// This function currently panics if `input_offset` is not a multiple of `CHUNK_LEN`. This is not
289/// guaranteed.
290#[inline(always)]
291pub fn max_subtree_len(input_offset: u64) -> Option<u64> {
292 if input_offset == 0 {
293 return None;
294 }
295 assert_eq!(input_offset % CHUNK_LEN as u64, 0);
296 let counter = input_offset / CHUNK_LEN as u64;
297 let max_chunks = 1 << counter.trailing_zeros();
298 Some(max_chunks * CHUNK_LEN as u64)
299}
300
301#[test]
302fn test_max_subtree_len() {
303 assert_eq!(max_subtree_len(0), None);
304 // (chunk index, max chunks)
305 let cases = [
306 (1, 1),
307 (2, 2),
308 (3, 1),
309 (4, 4),
310 (5, 1),
311 (6, 2),
312 (7, 1),
313 (8, 8),
314 ];
315 for (chunk_index, max_chunks) in cases {
316 let input_offset = chunk_index * CHUNK_LEN as u64;
317 assert_eq!(
318 max_subtree_len(input_offset),
319 Some(max_chunks * CHUNK_LEN as u64),
320 );
321 }
322}
323
324/// Given the length in bytes of either a complete input or a subtree input, return the number of
325/// bytes that belong to its left child subtree. The rest belong to its right child subtree.
326///
327/// Concretely, this function returns the largest power-of-two number of bytes that's strictly less
328/// than `input_len`. This leads to a tree where all left subtrees are "complete" and at least as
329/// large as their sibling right subtrees, as specified in section 2.1 of [the BLAKE3
330/// paper](https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf). For example, if an
331/// input is exactly two chunks, its left and right subtrees both get one chunk. But if an input is
332/// two chunks plus one more byte, then its left subtree gets two chunks, and its right subtree
333/// only gets one byte.
334///
335/// This function isn't meaningful for one chunk of input, because chunks don't have children. It
336/// currently panics in debug mode if `input_len <= CHUNK_LEN`.
337///
338/// # Example
339///
340/// Hash a input of random length as two subtrees:
341///
342/// ```
343/// # #[cfg(feature = "std")] {
344/// use blake3::hazmat::{left_subtree_len, merge_subtrees_root, HasherExt, Mode};
345/// use blake3::{Hasher, CHUNK_LEN};
346///
347/// // Generate a random-length input. Note that to be split into two subtrees, the input length
348/// // must be greater than CHUNK_LEN.
349/// let input_len = rand::random_range(CHUNK_LEN + 1..1_000_000);
350/// let mut input = vec![0; input_len];
351/// rand::fill(&mut input[..]);
352///
353/// // Compute the left and right subtree hashes and then the root hash. left_subtree_len() tells
354/// // us exactly where to split the input. Any other split would either panic (if we're lucky) or
355/// // lead to an incorrect root hash.
356/// let left_len = left_subtree_len(input_len as u64) as usize;
357/// let left_subtree_cv = Hasher::new()
358/// .update(&input[..left_len])
359/// .finalize_non_root();
360/// let right_subtree_cv = Hasher::new()
361/// .set_input_offset(left_len as u64)
362/// .update(&input[left_len..])
363/// .finalize_non_root();
364/// let root_hash = merge_subtrees_root(&left_subtree_cv, &right_subtree_cv, Mode::Hash);
365///
366/// // Double check the answer.
367/// assert_eq!(root_hash, blake3::hash(&input));
368/// # }
369/// ```
370#[inline(always)]
371pub fn left_subtree_len(input_len: u64) -> u64 {
372 debug_assert!(input_len > CHUNK_LEN as u64);
373 // Note that .next_power_of_two() is greater than *or equal*.
374 ((input_len + 1) / 2).next_power_of_two()
375}
376
377#[test]
378fn test_left_subtree_len() {
379 assert_eq!(left_subtree_len(1025), 1024);
380 for boundary_case in [2, 4, 8, 16, 32, 64] {
381 let input_len = boundary_case * CHUNK_LEN as u64;
382 assert_eq!(left_subtree_len(input_len - 1), input_len / 2);
383 assert_eq!(left_subtree_len(input_len), input_len / 2);
384 assert_eq!(left_subtree_len(input_len + 1), input_len);
385 }
386}
387
388/// The `mode` argument to [`merge_subtrees_root`] and friends
389///
390/// See the [module level examples](index.html#examples).
391#[derive(Copy, Clone, Debug)]
392pub enum Mode<'a> {
393 /// Corresponding to [`hash`](crate::hash)
394 Hash,
395
396 /// Corresponding to [`keyed_hash`](crate::hash)
397 KeyedHash(&'a [u8; KEY_LEN]),
398
399 /// Corresponding to [`derive_key`](crate::hash)
400 ///
401 /// The [`ContextKey`] comes from [`hash_derive_key_context`].
402 DeriveKeyMaterial(&'a ContextKey),
403}
404
405impl<'a> Mode<'a> {
406 fn key_words(&self) -> CVWords {
407 match self {
408 Mode::Hash => *IV,
409 Mode::KeyedHash(key) => crate::platform::words_from_le_bytes_32(key),
410 Mode::DeriveKeyMaterial(cx_key) => crate::platform::words_from_le_bytes_32(cx_key),
411 }
412 }
413
414 fn flags_byte(&self) -> u8 {
415 match self {
416 Mode::Hash => 0,
417 Mode::KeyedHash(_) => crate::KEYED_HASH,
418 Mode::DeriveKeyMaterial(_) => crate::DERIVE_KEY_MATERIAL,
419 }
420 }
421}
422
423/// "Chaining value" is the academic term for a non-root or non-final hash.
424///
425/// Besides just sounding fancy, it turns out there are [security
426/// reasons](https://jacko.io/tree_hashing.html) to be careful about the difference between
427/// (root/final) hashes and (non-root/non-final) chaining values.
428pub type ChainingValue = [u8; OUT_LEN];
429
430fn merge_subtrees_inner(
431 left_child: &ChainingValue,
432 right_child: &ChainingValue,
433 mode: Mode,
434) -> crate::Output {
435 crate::parent_node_output(
436 &left_child,
437 &right_child,
438 &mode.key_words(),
439 mode.flags_byte(),
440 Platform::detect(),
441 )
442}
443
444/// Compute a non-root parent node chaining value from two child chaining values.
445///
446/// See the [module level examples](index.html#examples), particularly the discussion of valid tree
447/// structures. The left and right child chaining values can come from either
448/// [`Hasher::finalize_non_root`](HasherExt::finalize_non_root) or other calls to
449/// `merge_subtrees_non_root`. "Chaining value" is the academic term for a non-root or non-final
450/// hash.
451pub fn merge_subtrees_non_root(
452 left_child: &ChainingValue,
453 right_child: &ChainingValue,
454 mode: Mode,
455) -> ChainingValue {
456 merge_subtrees_inner(left_child, right_child, mode).chaining_value()
457}
458
459/// Compute a root hash from two child chaining values.
460///
461/// See the [module level examples](index.html#examples), particularly the discussion of valid tree
462/// structures. The left and right child chaining values can come from either
463/// [`Hasher::finalize_non_root`](HasherExt::finalize_non_root) or [`merge_subtrees_non_root`].
464/// "Chaining value" is the academic term for a non-root or non-final hash.
465///
466/// Note that inputs of [`CHUNK_LEN`] or less don't produce any parent nodes and can't be hashed
467/// using this function. In that case you must get the root hash from [`Hasher::finalize`] (or just
468/// [`blake3::hash`](crate::hash)).
469pub fn merge_subtrees_root(
470 left_child: &ChainingValue,
471 right_child: &ChainingValue,
472 mode: Mode,
473) -> crate::Hash {
474 merge_subtrees_inner(left_child, right_child, mode).root_hash()
475}
476
477/// Build a root [`OutputReader`](crate::OutputReader) from two child chaining values.
478///
479/// See also the [module level examples](index.html#examples), particularly the discussion of valid
480/// tree structures. The left and right child chaining values can come from either
481/// [`Hasher::finalize_non_root`](HasherExt::finalize_non_root) or [`merge_subtrees_non_root`].
482/// "Chaining value" is the academic term for a non-root or non-final hash.
483///
484/// Note that inputs of [`CHUNK_LEN`] or less don't produce any parent nodes and can't be hashed
485/// using this function. In that case you must get the `OutputReader` from
486/// [`Hasher::finalize_xof`].
487///
488/// # Example
489///
490/// ```
491/// use blake3::hazmat::{merge_subtrees_root_xof, HasherExt, Mode};
492/// use blake3::{Hasher, CHUNK_LEN};
493///
494/// // Hash a 2-chunk subtree in steps. Note that only
495/// // the final chunk can be shorter than CHUNK_LEN.
496/// let chunk0 = &[42; CHUNK_LEN];
497/// let chunk1 = b"hello world";
498/// let chunk0_cv = Hasher::new()
499/// .update(chunk0)
500/// .finalize_non_root();
501/// let chunk1_cv = Hasher::new()
502/// .set_input_offset(CHUNK_LEN as u64)
503/// .update(chunk1)
504/// .finalize_non_root();
505///
506/// // Obtain a blake3::OutputReader at the root and extract 1000 bytes.
507/// let mut output_reader = merge_subtrees_root_xof(&chunk0_cv, &chunk1_cv, Mode::Hash);
508/// let mut output_bytes = [0; 1_000];
509/// output_reader.fill(&mut output_bytes);
510///
511/// // Double check the answer.
512/// let mut hasher = Hasher::new();
513/// hasher.update(chunk0);
514/// hasher.update(chunk1);
515/// let mut expected = [0; 1_000];
516/// hasher.finalize_xof().fill(&mut expected);
517/// assert_eq!(output_bytes, expected);
518/// ```
519pub fn merge_subtrees_root_xof(
520 left_child: &ChainingValue,
521 right_child: &ChainingValue,
522 mode: Mode,
523) -> crate::OutputReader {
524 crate::OutputReader::new(merge_subtrees_inner(left_child, right_child, mode))
525}
526
527/// An alias to distinguish [`hash_derive_key_context`] outputs from other keys.
528pub type ContextKey = [u8; KEY_LEN];
529
530/// Hash a [`derive_key`](crate::derive_key) context string and return a [`ContextKey`].
531///
532/// The _only_ valid uses for the returned [`ContextKey`] are [`Hasher::new_from_context_key`] and
533/// [`Mode::DeriveKeyMaterial`] (together with the merge subtree functions).
534///
535/// # Example
536///
537/// ```
538/// use blake3::Hasher;
539/// use blake3::hazmat::HasherExt;
540///
541/// let context_key = blake3::hazmat::hash_derive_key_context("foo");
542/// let mut hasher = Hasher::new_from_context_key(&context_key);
543/// hasher.update(b"bar");
544/// let derived_key = *hasher.finalize().as_bytes();
545///
546/// assert_eq!(derived_key, blake3::derive_key("foo", b"bar"));
547/// ```
548pub fn hash_derive_key_context(context: &str) -> ContextKey {
549 crate::hash_all_at_once::<crate::join::SerialJoin>(
550 context.as_bytes(),
551 IV,
552 crate::DERIVE_KEY_CONTEXT,
553 )
554 .root_hash()
555 .0
556}
557
558#[cfg(test)]
559mod test {
560 use super::*;
561
562 #[test]
563 #[should_panic]
564 fn test_empty_subtree_should_panic() {
565 Hasher::new().finalize_non_root();
566 }
567
568 #[test]
569 #[should_panic]
570 fn test_unaligned_offset_should_panic() {
571 Hasher::new().set_input_offset(1);
572 }
573
574 #[test]
575 #[should_panic]
576 fn test_hasher_already_accepted_input_should_panic() {
577 Hasher::new().update(b"x").set_input_offset(0);
578 }
579
580 #[test]
581 #[should_panic]
582 fn test_too_much_input_should_panic() {
583 Hasher::new()
584 .set_input_offset(CHUNK_LEN as u64)
585 .update(&[0; CHUNK_LEN + 1]);
586 }
587
588 #[test]
589 #[should_panic]
590 fn test_set_input_offset_cant_finalize() {
591 Hasher::new().set_input_offset(CHUNK_LEN as u64).finalize();
592 }
593
594 #[test]
595 #[should_panic]
596 fn test_set_input_offset_cant_finalize_xof() {
597 Hasher::new()
598 .set_input_offset(CHUNK_LEN as u64)
599 .finalize_xof();
600 }
601
602 #[test]
603 fn test_grouped_hash() {
604 const MAX_CHUNKS: usize = (crate::test::TEST_CASES_MAX + 1) / CHUNK_LEN;
605 let mut input_buf = [0; crate::test::TEST_CASES_MAX];
606 crate::test::paint_test_input(&mut input_buf);
607 for subtree_chunks in [1, 2, 4, 8, 16, 32] {
608 #[cfg(feature = "std")]
609 dbg!(subtree_chunks);
610 let subtree_len = subtree_chunks * CHUNK_LEN;
611 for &case in crate::test::TEST_CASES {
612 if case <= subtree_len {
613 continue;
614 }
615 #[cfg(feature = "std")]
616 dbg!(case);
617 let input = &input_buf[..case];
618 let expected_hash = crate::hash(input);
619
620 // Collect all the group chaining values.
621 let mut chaining_values = arrayvec::ArrayVec::<ChainingValue, MAX_CHUNKS>::new();
622 let mut subtree_offset = 0;
623 while subtree_offset < input.len() {
624 let take = core::cmp::min(subtree_len, input.len() - subtree_offset);
625 let subtree_input = &input[subtree_offset..][..take];
626 let subtree_cv = Hasher::new()
627 .set_input_offset(subtree_offset as u64)
628 .update(subtree_input)
629 .finalize_non_root();
630 chaining_values.push(subtree_cv);
631 subtree_offset += take;
632 }
633
634 // Compress all the chaining_values together, layer by layer.
635 assert!(chaining_values.len() >= 2);
636 while chaining_values.len() > 2 {
637 let n = chaining_values.len();
638 // Merge each side-by-side pair in place, overwriting the front half of the
639 // array with the merged results. This moves us "up one level" in the tree.
640 for i in 0..(n / 2) {
641 chaining_values[i] = merge_subtrees_non_root(
642 &chaining_values[2 * i],
643 &chaining_values[2 * i + 1],
644 Mode::Hash,
645 );
646 }
647 // If there's an odd CV out, it moves up.
648 if n % 2 == 1 {
649 chaining_values[n / 2] = chaining_values[n - 1];
650 }
651 chaining_values.truncate(n / 2 + n % 2);
652 }
653 assert_eq!(chaining_values.len(), 2);
654 let root_hash =
655 merge_subtrees_root(&chaining_values[0], &chaining_values[1], Mode::Hash);
656 assert_eq!(expected_hash, root_hash);
657 }
658 }
659 }
660
661 #[test]
662 fn test_keyed_hash_xof() {
663 let group0 = &[42; 4096];
664 let group1 = &[43; 4095];
665 let mut input = [0; 8191];
666 input[..4096].copy_from_slice(group0);
667 input[4096..].copy_from_slice(group1);
668 let key = &[44; 32];
669
670 let mut expected_output = [0; 100];
671 Hasher::new_keyed(&key)
672 .update(&input)
673 .finalize_xof()
674 .fill(&mut expected_output);
675
676 let mut hazmat_output = [0; 100];
677 let left = Hasher::new_keyed(key).update(group0).finalize_non_root();
678 let right = Hasher::new_keyed(key)
679 .set_input_offset(group0.len() as u64)
680 .update(group1)
681 .finalize_non_root();
682 merge_subtrees_root_xof(&left, &right, Mode::KeyedHash(&key)).fill(&mut hazmat_output);
683 assert_eq!(expected_output, hazmat_output);
684 }
685
686 #[test]
687 fn test_derive_key() {
688 let context = "foo";
689 let mut input = [0; 1025];
690 crate::test::paint_test_input(&mut input);
691 let expected = crate::derive_key(context, &input);
692
693 let cx_key = hash_derive_key_context(context);
694 let left = Hasher::new_from_context_key(&cx_key)
695 .update(&input[..1024])
696 .finalize_non_root();
697 let right = Hasher::new_from_context_key(&cx_key)
698 .set_input_offset(1024)
699 .update(&input[1024..])
700 .finalize_non_root();
701 let derived_key = merge_subtrees_root(&left, &right, Mode::DeriveKeyMaterial(&cx_key)).0;
702 assert_eq!(expected, derived_key);
703 }
704}