ark_poly/polynomial/univariate/
dense.rs

1//! A dense univariate polynomial represented in coefficient form.
2use crate::{
3    univariate::{DenseOrSparsePolynomial, SparsePolynomial},
4    DenseUVPolynomial, EvaluationDomain, Evaluations, GeneralEvaluationDomain, Polynomial,
5};
6use ark_ff::{FftField, Field, Zero};
7use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
8use ark_std::{
9    fmt,
10    ops::{Add, AddAssign, Deref, DerefMut, Div, Mul, Neg, Sub, SubAssign},
11    rand::Rng,
12    vec::*,
13};
14
15#[cfg(feature = "parallel")]
16use ark_std::cmp::max;
17#[cfg(feature = "parallel")]
18use rayon::prelude::*;
19
20/// Stores a polynomial in coefficient form.
21#[derive(Clone, PartialEq, Eq, Hash, Default, CanonicalSerialize, CanonicalDeserialize)]
22pub struct DensePolynomial<F: Field> {
23    /// The coefficient of `x^i` is stored at location `i` in `self.coeffs`.
24    pub coeffs: Vec<F>,
25}
26
27impl<F: Field> Polynomial<F> for DensePolynomial<F> {
28    type Point = F;
29
30    /// Returns the total degree of the polynomial
31    fn degree(&self) -> usize {
32        if self.is_zero() {
33            0
34        } else {
35            assert!(self.coeffs.last().map_or(false, |coeff| !coeff.is_zero()));
36            self.coeffs.len() - 1
37        }
38    }
39
40    /// Evaluates `self` at the given `point` in `Self::Point`.
41    fn evaluate(&self, point: &F) -> F {
42        if self.is_zero() {
43            return F::zero();
44        } else if point.is_zero() {
45            return self.coeffs[0];
46        }
47        self.internal_evaluate(point)
48    }
49}
50
51#[cfg(feature = "parallel")]
52// Set some minimum number of field elements to be worked on per thread
53// to avoid per-thread costs dominating parallel execution time.
54const MIN_ELEMENTS_PER_THREAD: usize = 16;
55
56impl<F: Field> DensePolynomial<F> {
57    #[inline]
58    // Horner's method for polynomial evaluation
59    fn horner_evaluate(poly_coeffs: &[F], point: &F) -> F {
60        poly_coeffs
61            .iter()
62            .rfold(F::zero(), move |result, coeff| result * point + coeff)
63    }
64
65    #[cfg(not(feature = "parallel"))]
66    fn internal_evaluate(&self, point: &F) -> F {
67        Self::horner_evaluate(&self.coeffs, point)
68    }
69
70    #[cfg(feature = "parallel")]
71    fn internal_evaluate(&self, point: &F) -> F {
72        // Horners method - parallel method
73        // compute the number of threads we will be using.
74        let num_cpus_available = rayon::current_num_threads();
75        let num_coeffs = self.coeffs.len();
76        let num_elem_per_thread = max(num_coeffs / num_cpus_available, MIN_ELEMENTS_PER_THREAD);
77
78        // run Horners method on each thread as follows:
79        // 1) Split up the coefficients across each thread evenly.
80        // 2) Do polynomial evaluation via horner's method for the thread's coefficients
81        // 3) Scale the result point^{thread coefficient start index}
82        // Then obtain the final polynomial evaluation by summing each threads result.
83        let result = self
84            .coeffs
85            .par_chunks(num_elem_per_thread)
86            .enumerate()
87            .map(|(i, chunk)| {
88                let mut thread_result = Self::horner_evaluate(&chunk, point);
89                thread_result *= point.pow(&[(i * num_elem_per_thread) as u64]);
90                thread_result
91            })
92            .sum();
93        result
94    }
95}
96
97impl<F: Field> DenseUVPolynomial<F> for DensePolynomial<F> {
98    /// Constructs a new polynomial from a list of coefficients.
99    fn from_coefficients_slice(coeffs: &[F]) -> Self {
100        Self::from_coefficients_vec(coeffs.to_vec())
101    }
102
103    /// Constructs a new polynomial from a list of coefficients.
104    fn from_coefficients_vec(coeffs: Vec<F>) -> Self {
105        let mut result = Self { coeffs };
106        // While there are zeros at the end of the coefficient vector, pop them off.
107        result.truncate_leading_zeros();
108        // Check that either the coefficients vec is empty or that the last coeff is
109        // non-zero.
110        assert!(result.coeffs.last().map_or(true, |coeff| !coeff.is_zero()));
111        result
112    }
113
114    /// Returns the coefficients of `self`
115    fn coeffs(&self) -> &[F] {
116        &self.coeffs
117    }
118
119    /// Outputs a univariate polynomial of degree `d` where each non-leading
120    /// coefficient is sampled uniformly at random from `F` and the leading
121    /// coefficient is sampled uniformly at random from among the non-zero
122    /// elements of `F`.
123    ///
124    /// # Example
125    /// ```
126    /// use ark_std::test_rng;
127    /// use ark_test_curves::bls12_381::Fr;
128    /// use ark_poly::{univariate::DensePolynomial, Polynomial, DenseUVPolynomial};
129    ///
130    /// let rng = &mut test_rng();
131    /// let poly = DensePolynomial::<Fr>::rand(8, rng);
132    /// assert_eq!(poly.degree(), 8);
133    /// ```
134    fn rand<R: Rng>(d: usize, rng: &mut R) -> Self {
135        let mut random_coeffs = Vec::new();
136
137        if d > 0 {
138            // d - 1 overflows when d = 0
139            for _ in 0..=(d - 1) {
140                random_coeffs.push(F::rand(rng));
141            }
142        }
143
144        let mut leading_coefficient = F::rand(rng);
145
146        while leading_coefficient.is_zero() {
147            leading_coefficient = F::rand(rng);
148        }
149
150        random_coeffs.push(leading_coefficient);
151
152        Self::from_coefficients_vec(random_coeffs)
153    }
154}
155
156impl<F: FftField> DensePolynomial<F> {
157    /// Multiply `self` by the vanishing polynomial for the domain `domain`.
158    /// Returns the result of the multiplication.
159    pub fn mul_by_vanishing_poly<D: EvaluationDomain<F>>(&self, domain: D) -> DensePolynomial<F> {
160        let mut shifted = vec![F::zero(); domain.size()];
161        shifted.extend_from_slice(&self.coeffs);
162        cfg_iter_mut!(shifted)
163            .zip(&self.coeffs)
164            .for_each(|(s, c)| *s -= c);
165        DensePolynomial::from_coefficients_vec(shifted)
166    }
167
168    /// Divide `self` by the vanishing polynomial for the domain `domain`.
169    /// Returns the quotient and remainder of the division.
170    pub fn divide_by_vanishing_poly<D: EvaluationDomain<F>>(
171        &self,
172        domain: D,
173    ) -> (DensePolynomial<F>, DensePolynomial<F>) {
174        let domain_size = domain.size();
175
176        if self.coeffs.len() < domain_size {
177            // If degree(self) < len(Domain), then the quotient is zero, and the entire polynomial is the remainder
178            (DensePolynomial::<F>::zero(), self.clone())
179        } else {
180            // Compute the quotient
181            //
182            // If `self.len() <= 2 * domain_size`
183            //    then quotient is simply `self.coeffs[domain_size..]`
184            // Otherwise
185            //    during the division by `x^domain_size - 1`, some of `self.coeffs[domain_size..]` will be updated as well
186            //    which can be computed using the following algorithm.
187            //
188            let mut quotient_vec = self.coeffs[domain_size..].to_vec();
189            for i in 1..(self.len() / domain_size) {
190                cfg_iter_mut!(quotient_vec)
191                    .zip(&self.coeffs[domain_size * (i + 1)..])
192                    .for_each(|(s, c)| *s += c);
193            }
194
195            // Compute the remainder
196            //
197            // `remainder = self - quotient_vec * (x^domain_size - 1)`
198            //
199            // Note that remainder must be smaller than `domain_size`.
200            // So we can look at only the first `domain_size` terms.
201            //
202            // Therefore,
203            // `remainder = self.coeffs[0..domain_size] - quotient_vec * (-1)`
204            // i.e.,
205            // `remainder = self.coeffs[0..domain_size] + quotient_vec`
206            //
207            let mut remainder_vec = self.coeffs[0..domain_size].to_vec();
208            cfg_iter_mut!(remainder_vec)
209                .zip(&quotient_vec)
210                .for_each(|(s, c)| *s += c);
211
212            let quotient = DensePolynomial::<F>::from_coefficients_vec(quotient_vec);
213            let remainder = DensePolynomial::<F>::from_coefficients_vec(remainder_vec);
214            (quotient, remainder)
215        }
216    }
217}
218
219impl<F: Field> DensePolynomial<F> {
220    fn truncate_leading_zeros(&mut self) {
221        while self.coeffs.last().map_or(false, |c| c.is_zero()) {
222            self.coeffs.pop();
223        }
224    }
225
226    /// Perform a naive n^2 multiplication of `self` by `other`.
227    pub fn naive_mul(&self, other: &Self) -> Self {
228        if self.is_zero() || other.is_zero() {
229            DensePolynomial::zero()
230        } else {
231            let mut result = vec![F::zero(); self.degree() + other.degree() + 1];
232            for (i, self_coeff) in self.coeffs.iter().enumerate() {
233                for (j, other_coeff) in other.coeffs.iter().enumerate() {
234                    result[i + j] += &(*self_coeff * other_coeff);
235                }
236            }
237            DensePolynomial::from_coefficients_vec(result)
238        }
239    }
240}
241
242impl<F: FftField> DensePolynomial<F> {
243    /// Evaluate `self` over `domain`.
244    pub fn evaluate_over_domain_by_ref<D: EvaluationDomain<F>>(
245        &self,
246        domain: D,
247    ) -> Evaluations<F, D> {
248        let poly: DenseOrSparsePolynomial<'_, F> = self.into();
249        DenseOrSparsePolynomial::<F>::evaluate_over_domain(poly, domain)
250    }
251
252    /// Evaluate `self` over `domain`.
253    pub fn evaluate_over_domain<D: EvaluationDomain<F>>(self, domain: D) -> Evaluations<F, D> {
254        let poly: DenseOrSparsePolynomial<'_, F> = self.into();
255        DenseOrSparsePolynomial::<F>::evaluate_over_domain(poly, domain)
256    }
257}
258
259impl<F: Field> fmt::Debug for DensePolynomial<F> {
260    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
261        for (i, coeff) in self.coeffs.iter().enumerate().filter(|(_, c)| !c.is_zero()) {
262            if i == 0 {
263                write!(f, "\n{:?}", coeff)?;
264            } else if i == 1 {
265                write!(f, " + \n{:?} * x", coeff)?;
266            } else {
267                write!(f, " + \n{:?} * x^{}", coeff, i)?;
268            }
269        }
270        Ok(())
271    }
272}
273
274impl<F: Field> Deref for DensePolynomial<F> {
275    type Target = [F];
276
277    fn deref(&self) -> &[F] {
278        &self.coeffs
279    }
280}
281
282impl<F: Field> DerefMut for DensePolynomial<F> {
283    fn deref_mut(&mut self) -> &mut [F] {
284        &mut self.coeffs
285    }
286}
287
288impl<'a, 'b, F: Field> Add<&'a DensePolynomial<F>> for &'b DensePolynomial<F> {
289    type Output = DensePolynomial<F>;
290
291    fn add(self, other: &'a DensePolynomial<F>) -> DensePolynomial<F> {
292        let mut result = if self.is_zero() {
293            other.clone()
294        } else if other.is_zero() {
295            self.clone()
296        } else if self.degree() >= other.degree() {
297            let mut result = self.clone();
298            result
299                .coeffs
300                .iter_mut()
301                .zip(&other.coeffs)
302                .for_each(|(a, b)| {
303                    *a += b;
304                });
305            result
306        } else {
307            let mut result = other.clone();
308            result
309                .coeffs
310                .iter_mut()
311                .zip(&self.coeffs)
312                .for_each(|(a, b)| {
313                    *a += b;
314                });
315            result
316        };
317        result.truncate_leading_zeros();
318        result
319    }
320}
321
322impl<'a, 'b, F: Field> Add<&'a SparsePolynomial<F>> for &'b DensePolynomial<F> {
323    type Output = DensePolynomial<F>;
324
325    #[inline]
326    fn add(self, other: &'a SparsePolynomial<F>) -> DensePolynomial<F> {
327        if self.is_zero() {
328            other.clone().into()
329        } else if other.is_zero() {
330            self.clone()
331        } else {
332            let mut result = self.clone();
333            // If `other` has higher degree than `self`, create a dense vector
334            // storing the upper coefficients of the addition
335            let mut upper_coeffs = match other.degree() > result.degree() {
336                true => vec![F::zero(); other.degree() - result.degree()],
337                false => Vec::new(),
338            };
339            for (pow, coeff) in other.iter() {
340                if *pow <= result.degree() {
341                    result.coeffs[*pow] += coeff;
342                } else {
343                    upper_coeffs[*pow - result.degree() - 1] = *coeff;
344                }
345            }
346            result.coeffs.extend(upper_coeffs);
347            result
348        }
349    }
350}
351
352impl<'a, F: Field> AddAssign<&'a DensePolynomial<F>> for DensePolynomial<F> {
353    fn add_assign(&mut self, other: &'a DensePolynomial<F>) {
354        if self.is_zero() {
355            self.coeffs.truncate(0);
356            self.coeffs.extend_from_slice(&other.coeffs);
357        } else if other.is_zero() {
358        } else if self.degree() >= other.degree() {
359            self.coeffs
360                .iter_mut()
361                .zip(&other.coeffs)
362                .for_each(|(a, b)| {
363                    *a += b;
364                });
365        } else {
366            // Add the necessary number of zero coefficients.
367            self.coeffs.resize(other.coeffs.len(), F::zero());
368            self.coeffs
369                .iter_mut()
370                .zip(&other.coeffs)
371                .for_each(|(a, b)| {
372                    *a += b;
373                });
374        }
375        self.truncate_leading_zeros();
376    }
377}
378
379impl<'a, F: Field> AddAssign<(F, &'a DensePolynomial<F>)> for DensePolynomial<F> {
380    fn add_assign(&mut self, (f, other): (F, &'a DensePolynomial<F>)) {
381        if self.is_zero() {
382            self.coeffs.truncate(0);
383            self.coeffs.extend_from_slice(&other.coeffs);
384            self.coeffs.iter_mut().for_each(|c| *c *= &f);
385            return;
386        } else if other.is_zero() {
387            return;
388        } else if self.degree() >= other.degree() {
389        } else {
390            // Add the necessary number of zero coefficients.
391            self.coeffs.resize(other.coeffs.len(), F::zero());
392        }
393        self.coeffs
394            .iter_mut()
395            .zip(&other.coeffs)
396            .for_each(|(a, b)| {
397                *a += &(f * b);
398            });
399        // If the leading coefficient ends up being zero, pop it off.
400        // This can happen if they were the same degree, or if a
401        // polynomial's coefficients were constructed with leading zeros.
402        self.truncate_leading_zeros();
403    }
404}
405
406impl<'a, F: Field> AddAssign<&'a SparsePolynomial<F>> for DensePolynomial<F> {
407    #[inline]
408    fn add_assign(&mut self, other: &'a SparsePolynomial<F>) {
409        if self.is_zero() {
410            self.coeffs.truncate(0);
411            self.coeffs.resize(other.degree() + 1, F::zero());
412
413            for (i, coeff) in other.iter() {
414                self.coeffs[*i] = *coeff;
415            }
416        } else if other.is_zero() {
417        } else {
418            // If `other` has higher degree than `self`, create a dense vector
419            // storing the upper coefficients of the addition
420            let mut upper_coeffs = match other.degree() > self.degree() {
421                true => vec![F::zero(); other.degree() - self.degree()],
422                false => Vec::new(),
423            };
424            for (pow, coeff) in other.iter() {
425                if *pow <= self.degree() {
426                    self.coeffs[*pow] += coeff;
427                } else {
428                    upper_coeffs[*pow - self.degree() - 1] = *coeff;
429                }
430            }
431            self.coeffs.extend(upper_coeffs);
432        }
433    }
434}
435
436impl<F: Field> Neg for DensePolynomial<F> {
437    type Output = DensePolynomial<F>;
438
439    #[inline]
440    fn neg(mut self) -> DensePolynomial<F> {
441        self.coeffs.iter_mut().for_each(|coeff| {
442            *coeff = -*coeff;
443        });
444        self
445    }
446}
447
448impl<'a, 'b, F: Field> Sub<&'a DensePolynomial<F>> for &'b DensePolynomial<F> {
449    type Output = DensePolynomial<F>;
450
451    #[inline]
452    fn sub(self, other: &'a DensePolynomial<F>) -> DensePolynomial<F> {
453        let mut result = if self.is_zero() {
454            let mut result = other.clone();
455            result.coeffs.iter_mut().for_each(|c| *c = -(*c));
456            result
457        } else if other.is_zero() {
458            self.clone()
459        } else if self.degree() >= other.degree() {
460            let mut result = self.clone();
461            result
462                .coeffs
463                .iter_mut()
464                .zip(&other.coeffs)
465                .for_each(|(a, b)| *a -= b);
466            result
467        } else {
468            let mut result = self.clone();
469            result.coeffs.resize(other.coeffs.len(), F::zero());
470            result
471                .coeffs
472                .iter_mut()
473                .zip(&other.coeffs)
474                .for_each(|(a, b)| *a -= b);
475            result
476        };
477        result.truncate_leading_zeros();
478        result
479    }
480}
481
482impl<'a, 'b, F: Field> Sub<&'a SparsePolynomial<F>> for &'b DensePolynomial<F> {
483    type Output = DensePolynomial<F>;
484
485    #[inline]
486    fn sub(self, other: &'a SparsePolynomial<F>) -> DensePolynomial<F> {
487        if self.is_zero() {
488            let result = other.clone();
489            result.neg().into()
490        } else if other.is_zero() {
491            self.clone()
492        } else {
493            let mut result = self.clone();
494            // If `other` has higher degree than `self`, create a dense vector
495            // storing the upper coefficients of the subtraction
496            let mut upper_coeffs = match other.degree() > result.degree() {
497                true => vec![F::zero(); other.degree() - result.degree()],
498                false => Vec::new(),
499            };
500            for (pow, coeff) in other.iter() {
501                if *pow <= result.degree() {
502                    result.coeffs[*pow] -= coeff;
503                } else {
504                    upper_coeffs[*pow - result.degree() - 1] = -*coeff;
505                }
506            }
507            result.coeffs.extend(upper_coeffs);
508            result
509        }
510    }
511}
512
513impl<'a, F: Field> SubAssign<&'a DensePolynomial<F>> for DensePolynomial<F> {
514    #[inline]
515    fn sub_assign(&mut self, other: &'a DensePolynomial<F>) {
516        if self.is_zero() {
517            self.coeffs.resize(other.coeffs.len(), F::zero());
518        } else if other.is_zero() {
519            return;
520        } else if self.degree() >= other.degree() {
521        } else {
522            // Add the necessary number of zero coefficients.
523            self.coeffs.resize(other.coeffs.len(), F::zero());
524        }
525        self.coeffs
526            .iter_mut()
527            .zip(&other.coeffs)
528            .for_each(|(a, b)| {
529                *a -= b;
530            });
531        // If the leading coefficient ends up being zero, pop it off.
532        // This can happen if they were the same degree, or if other's
533        // coefficients were constructed with leading zeros.
534        self.truncate_leading_zeros();
535    }
536}
537
538impl<'a, F: Field> SubAssign<&'a SparsePolynomial<F>> for DensePolynomial<F> {
539    #[inline]
540    fn sub_assign(&mut self, other: &'a SparsePolynomial<F>) {
541        if self.is_zero() {
542            self.coeffs.truncate(0);
543            self.coeffs.resize(other.degree() + 1, F::zero());
544
545            for (i, coeff) in other.iter() {
546                self.coeffs[*i] = (*coeff).neg();
547            }
548        } else if other.is_zero() {
549        } else {
550            // If `other` has higher degree than `self`, create a dense vector
551            // storing the upper coefficients of the subtraction
552            let mut upper_coeffs = match other.degree() > self.degree() {
553                true => vec![F::zero(); other.degree() - self.degree()],
554                false => Vec::new(),
555            };
556            for (pow, coeff) in other.iter() {
557                if *pow <= self.degree() {
558                    self.coeffs[*pow] -= coeff;
559                } else {
560                    upper_coeffs[*pow - self.degree() - 1] = -*coeff;
561                }
562            }
563            self.coeffs.extend(upper_coeffs);
564        }
565    }
566}
567
568impl<'a, 'b, F: Field> Div<&'a DensePolynomial<F>> for &'b DensePolynomial<F> {
569    type Output = DensePolynomial<F>;
570
571    #[inline]
572    fn div(self, divisor: &'a DensePolynomial<F>) -> DensePolynomial<F> {
573        let a = DenseOrSparsePolynomial::from(self);
574        let b = DenseOrSparsePolynomial::from(divisor);
575        a.divide_with_q_and_r(&b).expect("division failed").0
576    }
577}
578
579impl<'b, F: Field> Mul<F> for &'b DensePolynomial<F> {
580    type Output = DensePolynomial<F>;
581
582    #[inline]
583    fn mul(self, elem: F) -> DensePolynomial<F> {
584        if self.is_zero() || elem.is_zero() {
585            DensePolynomial::zero()
586        } else {
587            let mut result = self.clone();
588            cfg_iter_mut!(result).for_each(|e| {
589                *e *= elem;
590            });
591            result
592        }
593    }
594}
595
596impl<F: Field> Mul<F> for DensePolynomial<F> {
597    type Output = DensePolynomial<F>;
598
599    #[inline]
600    fn mul(self, elem: F) -> DensePolynomial<F> {
601        &self * elem
602    }
603}
604
605/// Performs O(nlogn) multiplication of polynomials if F is smooth.
606impl<'a, 'b, F: FftField> Mul<&'a DensePolynomial<F>> for &'b DensePolynomial<F> {
607    type Output = DensePolynomial<F>;
608
609    #[inline]
610    fn mul(self, other: &'a DensePolynomial<F>) -> DensePolynomial<F> {
611        if self.is_zero() || other.is_zero() {
612            DensePolynomial::zero()
613        } else {
614            let domain = GeneralEvaluationDomain::new(self.coeffs.len() + other.coeffs.len() - 1)
615                .expect("field is not smooth enough to construct domain");
616            let mut self_evals = self.evaluate_over_domain_by_ref(domain);
617            let other_evals = other.evaluate_over_domain_by_ref(domain);
618            self_evals *= &other_evals;
619            self_evals.interpolate()
620        }
621    }
622}
623
624macro_rules! impl_op {
625    ($trait:ident, $method:ident, $field_bound:ident) => {
626        impl<F: $field_bound> $trait<DensePolynomial<F>> for DensePolynomial<F> {
627            type Output = DensePolynomial<F>;
628
629            #[inline]
630            fn $method(self, other: DensePolynomial<F>) -> DensePolynomial<F> {
631                (&self).$method(&other)
632            }
633        }
634
635        impl<'a, F: $field_bound> $trait<&'a DensePolynomial<F>> for DensePolynomial<F> {
636            type Output = DensePolynomial<F>;
637
638            #[inline]
639            fn $method(self, other: &'a DensePolynomial<F>) -> DensePolynomial<F> {
640                (&self).$method(other)
641            }
642        }
643
644        impl<'a, F: $field_bound> $trait<DensePolynomial<F>> for &'a DensePolynomial<F> {
645            type Output = DensePolynomial<F>;
646
647            #[inline]
648            fn $method(self, other: DensePolynomial<F>) -> DensePolynomial<F> {
649                self.$method(&other)
650            }
651        }
652    };
653}
654
655impl<F: Field> Zero for DensePolynomial<F> {
656    /// Returns the zero polynomial.
657    fn zero() -> Self {
658        Self { coeffs: Vec::new() }
659    }
660
661    /// Checks if the given polynomial is zero.
662    fn is_zero(&self) -> bool {
663        self.coeffs.is_empty() || self.coeffs.iter().all(|coeff| coeff.is_zero())
664    }
665}
666
667impl_op!(Add, add, Field);
668impl_op!(Sub, sub, Field);
669impl_op!(Mul, mul, FftField);
670impl_op!(Div, div, Field);
671
672#[cfg(test)]
673mod tests {
674    use crate::{polynomial::univariate::*, GeneralEvaluationDomain};
675    use ark_ff::{Fp64, MontBackend, MontConfig};
676    use ark_ff::{One, UniformRand};
677    use ark_std::{rand::Rng, test_rng};
678    use ark_test_curves::bls12_381::Fr;
679
680    fn rand_sparse_poly<R: Rng>(degree: usize, rng: &mut R) -> SparsePolynomial<Fr> {
681        // Initialize coeffs so that its guaranteed to have a x^{degree} term
682        let mut coeffs = vec![(degree, Fr::rand(rng))];
683        for i in 0..degree {
684            if !rng.gen_bool(0.8) {
685                coeffs.push((i, Fr::rand(rng)));
686            }
687        }
688        SparsePolynomial::from_coefficients_vec(coeffs)
689    }
690
691    #[test]
692    fn rand_dense_poly_degree() {
693        #[derive(MontConfig)]
694        #[modulus = "5"]
695        #[generator = "2"]
696        pub struct F5Config;
697
698        let rng = &mut test_rng();
699        pub type F5 = Fp64<MontBackend<F5Config, 1>>;
700
701        // if the leading coefficient were uniformly sampled from all of F, this
702        // test would fail with high probability ~99.9%
703        for i in 1..=30 {
704            assert_eq!(DensePolynomial::<F5>::rand(i, rng).degree(), i);
705        }
706    }
707
708    #[test]
709    fn double_polynomials_random() {
710        let rng = &mut test_rng();
711        for degree in 0..70 {
712            let p = DensePolynomial::<Fr>::rand(degree, rng);
713            let p_double = &p + &p;
714            let p_quad = &p_double + &p_double;
715            assert_eq!(&(&(&p + &p) + &p) + &p, p_quad);
716        }
717    }
718
719    #[test]
720    fn add_polynomials() {
721        let rng = &mut test_rng();
722        for a_degree in 0..70 {
723            for b_degree in 0..70 {
724                let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
725                let p2 = DensePolynomial::<Fr>::rand(b_degree, rng);
726                let res1 = &p1 + &p2;
727                let res2 = &p2 + &p1;
728                assert_eq!(res1, res2);
729            }
730        }
731    }
732
733    #[test]
734    fn add_sparse_polynomials() {
735        let rng = &mut test_rng();
736        for a_degree in 0..70 {
737            for b_degree in 0..70 {
738                let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
739                let p2 = rand_sparse_poly(b_degree, rng);
740                let res = &p1 + &p2;
741                assert_eq!(res, &p1 + &Into::<DensePolynomial<Fr>>::into(p2));
742            }
743        }
744    }
745
746    #[test]
747    fn add_assign_sparse_polynomials() {
748        let rng = &mut test_rng();
749        for a_degree in 0..70 {
750            for b_degree in 0..70 {
751                let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
752                let p2 = rand_sparse_poly(b_degree, rng);
753
754                let mut res = p1.clone();
755                res += &p2;
756                assert_eq!(res, &p1 + &Into::<DensePolynomial<Fr>>::into(p2));
757            }
758        }
759    }
760
761    #[test]
762    fn add_polynomials_with_mul() {
763        let rng = &mut test_rng();
764        for a_degree in 0..70 {
765            for b_degree in 0..70 {
766                let mut p1 = DensePolynomial::rand(a_degree, rng);
767                let p2 = DensePolynomial::rand(b_degree, rng);
768                let f = Fr::rand(rng);
769                let f_p2 = DensePolynomial::from_coefficients_vec(
770                    p2.coeffs.iter().map(|c| f * c).collect(),
771                );
772                let res2 = &f_p2 + &p1;
773                p1 += (f, &p2);
774                let res1 = p1;
775                assert_eq!(res1, res2);
776            }
777        }
778    }
779
780    #[test]
781    fn sub_polynomials() {
782        let rng = &mut test_rng();
783        for a_degree in 0..70 {
784            for b_degree in 0..70 {
785                let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
786                let p2 = DensePolynomial::<Fr>::rand(b_degree, rng);
787                let res1 = &p1 - &p2;
788                let res2 = &p2 - &p1;
789                assert_eq!(&res1 + &p2, p1);
790                assert_eq!(res1, -res2);
791            }
792        }
793    }
794
795    #[test]
796    fn sub_sparse_polynomials() {
797        let rng = &mut test_rng();
798        for a_degree in 0..70 {
799            for b_degree in 0..70 {
800                let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
801                let p2 = rand_sparse_poly(b_degree, rng);
802                let res = &p1 - &p2;
803                assert_eq!(res, &p1 - &Into::<DensePolynomial<Fr>>::into(p2));
804            }
805        }
806    }
807
808    #[test]
809    fn sub_assign_sparse_polynomials() {
810        let rng = &mut test_rng();
811        for a_degree in 0..70 {
812            for b_degree in 0..70 {
813                let p1 = DensePolynomial::<Fr>::rand(a_degree, rng);
814                let p2 = rand_sparse_poly(b_degree, rng);
815
816                let mut res = p1.clone();
817                res -= &p2;
818                assert_eq!(res, &p1 - &Into::<DensePolynomial<Fr>>::into(p2));
819            }
820        }
821    }
822
823    #[test]
824    fn polynomial_additive_identity() {
825        // Test adding polynomials with its negative equals 0
826        let mut rng = test_rng();
827        for degree in 0..70 {
828            let poly = DensePolynomial::<Fr>::rand(degree, &mut rng);
829            let neg = -poly.clone();
830            let result = poly + neg;
831            assert!(result.is_zero());
832            assert_eq!(result.degree(), 0);
833
834            // Test with SubAssign trait
835            let poly = DensePolynomial::<Fr>::rand(degree, &mut rng);
836            let mut result = poly.clone();
837            result -= &poly;
838            assert!(result.is_zero());
839            assert_eq!(result.degree(), 0);
840        }
841    }
842
843    #[test]
844    fn divide_polynomials_fixed() {
845        let dividend = DensePolynomial::from_coefficients_slice(&[
846            "4".parse().unwrap(),
847            "8".parse().unwrap(),
848            "5".parse().unwrap(),
849            "1".parse().unwrap(),
850        ]);
851        let divisor = DensePolynomial::from_coefficients_slice(&[Fr::one(), Fr::one()]); // Construct a monic linear polynomial.
852        let result = &dividend / &divisor;
853        let expected_result = DensePolynomial::from_coefficients_slice(&[
854            "4".parse().unwrap(),
855            "4".parse().unwrap(),
856            "1".parse().unwrap(),
857        ]);
858        assert_eq!(expected_result, result);
859    }
860
861    #[test]
862    fn divide_polynomials_random() {
863        let rng = &mut test_rng();
864
865        for a_degree in 0..50 {
866            for b_degree in 0..50 {
867                let dividend = DensePolynomial::<Fr>::rand(a_degree, rng);
868                let divisor = DensePolynomial::<Fr>::rand(b_degree, rng);
869                if let Some((quotient, remainder)) = DenseOrSparsePolynomial::divide_with_q_and_r(
870                    &(&dividend).into(),
871                    &(&divisor).into(),
872                ) {
873                    assert_eq!(dividend, &(&divisor * &quotient) + &remainder)
874                }
875            }
876        }
877    }
878
879    #[test]
880    fn evaluate_polynomials() {
881        let rng = &mut test_rng();
882        for a_degree in 0..70 {
883            let p = DensePolynomial::rand(a_degree, rng);
884            let point: Fr = Fr::rand(rng);
885            let mut total = Fr::zero();
886            for (i, coeff) in p.coeffs.iter().enumerate() {
887                total += &(point.pow(&[i as u64]) * coeff);
888            }
889            assert_eq!(p.evaluate(&point), total);
890        }
891    }
892
893    #[test]
894    fn mul_random_element() {
895        let rng = &mut test_rng();
896        for degree in 0..70 {
897            let a = DensePolynomial::<Fr>::rand(degree, rng);
898            let e = Fr::rand(rng);
899            assert_eq!(
900                &a * e,
901                a.naive_mul(&DensePolynomial::from_coefficients_slice(&[e]))
902            )
903        }
904    }
905
906    #[test]
907    fn mul_polynomials_random() {
908        let rng = &mut test_rng();
909        for a_degree in 0..70 {
910            for b_degree in 0..70 {
911                let a = DensePolynomial::<Fr>::rand(a_degree, rng);
912                let b = DensePolynomial::<Fr>::rand(b_degree, rng);
913                assert_eq!(&a * &b, a.naive_mul(&b))
914            }
915        }
916    }
917
918    #[test]
919    fn mul_by_vanishing_poly() {
920        let rng = &mut test_rng();
921        for size in 1..10 {
922            let domain = GeneralEvaluationDomain::new(1 << size).unwrap();
923            for degree in 0..70 {
924                let p = DensePolynomial::<Fr>::rand(degree, rng);
925                let ans1 = p.mul_by_vanishing_poly(domain);
926                let ans2 = &p * &domain.vanishing_polynomial().into();
927                assert_eq!(ans1, ans2);
928            }
929        }
930    }
931
932    #[test]
933    fn divide_by_vanishing_poly() {
934        let rng = &mut test_rng();
935        for size in 1..10 {
936            let domain = GeneralEvaluationDomain::new(1 << size).unwrap();
937            for degree in 0..12 {
938                let p = DensePolynomial::<Fr>::rand(degree * 100, rng);
939                let (quotient, remainder) = p.divide_by_vanishing_poly(domain);
940                let p_recovered = quotient.mul_by_vanishing_poly(domain) + remainder;
941                assert_eq!(p, p_recovered);
942            }
943        }
944    }
945
946    #[test]
947    fn test_leading_zero() {
948        let n = 10;
949        let rand_poly = DensePolynomial::rand(n, &mut test_rng());
950        let coefficients = rand_poly.coeffs.clone();
951        let leading_coefficient: Fr = coefficients[n];
952
953        let negative_leading_coefficient = -leading_coefficient;
954        let inverse_leading_coefficient = leading_coefficient.inverse().unwrap();
955
956        let mut inverse_coefficients = coefficients.clone();
957        inverse_coefficients[n] = inverse_leading_coefficient;
958
959        let mut negative_coefficients = coefficients;
960        negative_coefficients[n] = negative_leading_coefficient;
961
962        let negative_poly = DensePolynomial::from_coefficients_vec(negative_coefficients);
963        let inverse_poly = DensePolynomial::from_coefficients_vec(inverse_coefficients);
964
965        let x = &inverse_poly * &rand_poly;
966        assert_eq!(x.degree(), 2 * n);
967        assert!(!x.coeffs.last().unwrap().is_zero());
968
969        let y = &negative_poly + &rand_poly;
970        assert_eq!(y.degree(), n - 1);
971        assert!(!y.coeffs.last().unwrap().is_zero());
972    }
973
974    #[test]
975    fn evaluate_over_domain_test() {
976        let rng = &mut ark_std::test_rng();
977        let domain = crate::domain::Radix2EvaluationDomain::<Fr>::new(1 << 10).unwrap();
978        let offset = Fr::GENERATOR;
979        let coset = domain.get_coset(offset).unwrap();
980        for _ in 0..100 {
981            let poly = DensePolynomial::<Fr>::rand(1 << 11, rng);
982            let evaluations = domain
983                .elements()
984                .map(|e| poly.evaluate(&e))
985                .collect::<Vec<_>>();
986            assert_eq!(evaluations, poly.evaluate_over_domain_by_ref(domain).evals);
987            let evaluations = coset
988                .elements()
989                .map(|e| poly.evaluate(&e))
990                .collect::<Vec<_>>();
991            assert_eq!(evaluations, poly.evaluate_over_domain(coset).evals);
992        }
993        let zero = DensePolynomial::zero();
994        let evaluations = domain
995            .elements()
996            .map(|e| zero.evaluate(&e))
997            .collect::<Vec<_>>();
998        assert_eq!(evaluations, zero.evaluate_over_domain(domain).evals);
999    }
1000
1001    use crate::Radix2EvaluationDomain;
1002
1003    #[test]
1004    fn evaluate_over_domain_regression_test() {
1005        // See https://github.com/arkworks-rs/algebra/issues/745
1006        #[derive(MontConfig)]
1007        #[modulus = "18446744069414584321"]
1008        #[generator = "7"]
1009        struct FrConfig64;
1010        type F = Fp64<MontBackend<FrConfig64, 1>>;
1011
1012        let degree = 17;
1013        let eval_domain_size = 16;
1014
1015        let poly = DensePolynomial::from_coefficients_vec(vec![F::ONE; degree]);
1016        let domain = Radix2EvaluationDomain::new(eval_domain_size).unwrap();
1017
1018        // Now we get a coset
1019        let offset = F::from(42u64);
1020        let domain = domain.get_coset(offset).unwrap();
1021
1022        // This is the query points of the domain
1023        let query_points: Vec<_> = domain.elements().collect();
1024
1025        let eval1 = poly.evaluate_over_domain_by_ref(domain).evals;
1026        let eval2 = query_points
1027            .iter()
1028            .map(|x| poly.evaluate(x))
1029            .collect::<Vec<_>>();
1030
1031        assert_eq!(eval1, eval2);
1032    }
1033}