1use crate::{
2 biginteger::BigInteger,
3 fields::{Field, LegendreSymbol, PrimeField},
4 AdditiveGroup, FftField, One, SqrtPrecomputation, ToConstraintField, UniformRand, Zero,
5};
6use ark_serialize::{
7 CanonicalDeserialize, CanonicalDeserializeWithFlags, CanonicalSerialize,
8 CanonicalSerializeWithFlags, Compress, EmptyFlags, Flags, SerializationError, Valid, Validate,
9};
10use ark_std::{
11 cmp::*,
12 fmt,
13 io::{Read, Write},
14 iter::*,
15 ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign},
16 rand::{
17 distributions::{Distribution, Standard},
18 Rng,
19 },
20 vec::*,
21};
22use zeroize::Zeroize;
23
24pub trait QuadExtConfig: 'static + Send + Sync + Sized {
26 type BasePrimeField: PrimeField;
28 type BaseField: Field<BasePrimeField = Self::BasePrimeField>;
34 type FrobCoeff: Field;
37
38 const DEGREE_OVER_BASE_PRIME_FIELD: usize;
40
41 const NONRESIDUE: Self::BaseField;
43
44 const FROBENIUS_COEFF_C1: &'static [Self::FrobCoeff];
46
47 #[inline(always)]
51 fn mul_base_field_by_nonresidue_in_place(fe: &mut Self::BaseField) -> &mut Self::BaseField {
52 *fe *= &Self::NONRESIDUE;
53 fe
54 }
55
56 #[inline(always)]
60 fn mul_base_field_by_nonresidue_and_add(y: &mut Self::BaseField, x: &Self::BaseField) {
61 Self::mul_base_field_by_nonresidue_in_place(y);
62 *y += x;
63 }
64
65 #[inline(always)]
68 fn mul_base_field_by_nonresidue_plus_one_and_add(y: &mut Self::BaseField, x: &Self::BaseField) {
69 let old_y = *y;
70 Self::mul_base_field_by_nonresidue_and_add(y, x);
71 *y += old_y;
72 }
73
74 #[inline(always)]
78 fn sub_and_mul_base_field_by_nonresidue(y: &mut Self::BaseField, x: &Self::BaseField) {
79 Self::mul_base_field_by_nonresidue_in_place(y);
80 let mut result = *x;
81 result -= &*y;
82 *y = result;
83 }
84
85 fn mul_base_field_by_frob_coeff(fe: &mut Self::BaseField, power: usize);
88}
89
90#[derive(Educe)]
93#[educe(Default, Hash, Clone, Copy, Debug, PartialEq, Eq)]
94pub struct QuadExtField<P: QuadExtConfig> {
95 pub c0: P::BaseField,
97 pub c1: P::BaseField,
99}
100
101impl<P: QuadExtConfig> QuadExtField<P> {
102 pub const fn new(c0: P::BaseField, c1: P::BaseField) -> Self {
117 Self { c0, c1 }
118 }
119
120 pub fn conjugate_in_place(&mut self) -> &mut Self {
123 self.c1 = -self.c1;
124 self
125 }
126
127 pub fn norm(&self) -> P::BaseField {
150 let mut result = self.c1.square();
152 P::sub_and_mul_base_field_by_nonresidue(&mut result, &self.c0.square());
153 result
154 }
155
156 pub fn mul_assign_by_basefield(&mut self, element: &P::BaseField) {
159 self.c0 *= element;
160 self.c1 *= element;
161 }
162}
163
164impl<P: QuadExtConfig> Zero for QuadExtField<P> {
165 fn zero() -> Self {
166 QuadExtField::new(P::BaseField::zero(), P::BaseField::zero())
167 }
168
169 fn is_zero(&self) -> bool {
170 self.c0.is_zero() && self.c1.is_zero()
171 }
172}
173
174impl<P: QuadExtConfig> One for QuadExtField<P> {
175 fn one() -> Self {
176 QuadExtField::new(P::BaseField::one(), P::BaseField::zero())
177 }
178
179 fn is_one(&self) -> bool {
180 self.c0.is_one() && self.c1.is_zero()
181 }
182}
183
184impl<P: QuadExtConfig> AdditiveGroup for QuadExtField<P> {
185 type Scalar = Self;
186
187 const ZERO: Self = Self::new(P::BaseField::ZERO, P::BaseField::ZERO);
188
189 fn double(&self) -> Self {
190 let mut result = *self;
191 result.double_in_place();
192 result
193 }
194
195 fn double_in_place(&mut self) -> &mut Self {
196 self.c0.double_in_place();
197 self.c1.double_in_place();
198 self
199 }
200
201 fn neg_in_place(&mut self) -> &mut Self {
202 self.c0.neg_in_place();
203 self.c1.neg_in_place();
204 self
205 }
206}
207
208impl<P: QuadExtConfig> Field for QuadExtField<P> {
209 type BasePrimeField = P::BasePrimeField;
210
211 const SQRT_PRECOMP: Option<SqrtPrecomputation<Self>> = None;
212
213 const ONE: Self = Self::new(P::BaseField::ONE, P::BaseField::ZERO);
214
215 fn extension_degree() -> u64 {
216 2 * P::BaseField::extension_degree()
217 }
218
219 fn from_base_prime_field(elem: Self::BasePrimeField) -> Self {
220 let fe = P::BaseField::from_base_prime_field(elem);
221 Self::new(fe, P::BaseField::ZERO)
222 }
223
224 fn to_base_prime_field_elements(&self) -> impl Iterator<Item = Self::BasePrimeField> {
225 self.c0
226 .to_base_prime_field_elements()
227 .chain(self.c1.to_base_prime_field_elements())
228 }
229
230 fn from_base_prime_field_elems(
231 elems: impl IntoIterator<Item = Self::BasePrimeField>,
232 ) -> Option<Self> {
233 let mut elems = elems.into_iter();
234 let elems = elems.by_ref();
235 let base_ext_deg = P::BaseField::extension_degree() as usize;
236 let element = Some(Self::new(
237 P::BaseField::from_base_prime_field_elems(elems.take(base_ext_deg))?,
238 P::BaseField::from_base_prime_field_elems(elems.take(base_ext_deg))?,
239 ));
240 if elems.next().is_some() {
241 None
242 } else {
243 element
244 }
245 }
246
247 fn square(&self) -> Self {
248 let mut result = *self;
249 result.square_in_place();
250 result
251 }
252
253 #[inline]
254 fn from_random_bytes_with_flags<F: Flags>(bytes: &[u8]) -> Option<(Self, F)> {
255 let split_at = bytes.len() / 2;
256 if let Some(c0) = P::BaseField::from_random_bytes(&bytes[..split_at]) {
257 if let Some((c1, flags)) =
258 P::BaseField::from_random_bytes_with_flags(&bytes[split_at..])
259 {
260 return Some((QuadExtField::new(c0, c1), flags));
261 }
262 }
263 None
264 }
265
266 #[inline]
267 fn from_random_bytes(bytes: &[u8]) -> Option<Self> {
268 Self::from_random_bytes_with_flags::<EmptyFlags>(bytes).map(|f| f.0)
269 }
270
271 fn square_in_place(&mut self) -> &mut Self {
272 if P::NONRESIDUE == -P::BaseField::ONE {
279 let c0_copy = self.c0;
283 let mut v0 = self.c0;
285 v0 -= &self.c1;
286 self.c0 += self.c1;
287 self.c0 *= &v0;
290
291 self.c1.double_in_place();
293 self.c1 *= &c0_copy;
296
297 self
298 } else {
299 let mut v0 = self.c0 - &self.c1;
301 let mut v3 = self.c1;
303 P::sub_and_mul_base_field_by_nonresidue(&mut v3, &self.c0);
304 let v2 = self.c0 * &self.c1;
306
307 v0 *= &v3;
311
312 self.c1 = v2;
314 self.c1.double_in_place();
315 self.c0 = v2;
319 P::mul_base_field_by_nonresidue_plus_one_and_add(&mut self.c0, &v0);
320
321 self
322 }
323 }
324
325 fn inverse(&self) -> Option<Self> {
326 if self.is_zero() {
327 None
328 } else {
329 let v1 = self.c1.square();
332 let mut v0 = v1;
334 P::sub_and_mul_base_field_by_nonresidue(&mut v0, &self.c0.square());
335
336 v0.inverse().map(|v1| {
337 let c0 = self.c0 * &v1;
338 let c1 = -(self.c1 * &v1);
339 Self::new(c0, c1)
340 })
341 }
342 }
343
344 fn inverse_in_place(&mut self) -> Option<&mut Self> {
345 if let Some(inverse) = self.inverse() {
346 *self = inverse;
347 Some(self)
348 } else {
349 None
350 }
351 }
352
353 fn frobenius_map_in_place(&mut self, power: usize) {
354 self.c0.frobenius_map_in_place(power);
355 self.c1.frobenius_map_in_place(power);
356 P::mul_base_field_by_frob_coeff(&mut self.c1, power);
357 }
358
359 fn legendre(&self) -> LegendreSymbol {
360 self.norm().legendre()
371 }
372
373 fn sqrt(&self) -> Option<Self> {
374 if self.c1.is_zero() {
377 if self.c0.legendre().is_qr() {
383 return self.c0.sqrt().map(|c0| Self::new(c0, P::BaseField::ZERO));
385 } else {
386 return (self.c0.div(P::NONRESIDUE))
388 .sqrt()
389 .map(|res| Self::new(P::BaseField::ZERO, res));
390 }
391 }
392 let alpha = self.norm();
395
396 let mut two_inv = P::BasePrimeField::MODULUS;
399
400 two_inv.add_with_carry(&1u64.into());
401 two_inv.div2();
402
403 let two_inv = P::BasePrimeField::from(two_inv);
404 let two_inv = P::BaseField::from_base_prime_field(two_inv);
405
406 alpha.sqrt().and_then(|alpha| {
407 let mut delta = (alpha + &self.c0) * &two_inv;
408 if delta.legendre().is_qnr() {
409 delta -= α
410 }
411 let c0 = delta.sqrt().expect("Delta must have a square root");
412 let c0_inv = c0.inverse().expect("c0 must have an inverse");
413 let sqrt_cand = Self::new(c0, self.c1 * &two_inv * &c0_inv);
414 if sqrt_cand.square() == *self {
417 Some(sqrt_cand)
418 } else {
419 #[cfg(debug_assertions)]
420 {
421 use crate::fields::LegendreSymbol::*;
422 if self.legendre() != QuadraticNonResidue {
423 panic!(
424 "Input has a square root per its legendre symbol, but it was not found"
425 )
426 }
427 }
428 None
429 }
430 })
431 }
432
433 fn sqrt_in_place(&mut self) -> Option<&mut Self> {
434 (*self).sqrt().map(|sqrt| {
435 *self = sqrt;
436 self
437 })
438 }
439
440 fn mul_by_base_prime_field(&self, elem: &Self::BasePrimeField) -> Self {
441 let mut result = *self;
442 result.c0 = result.c0.mul_by_base_prime_field(elem);
443 result.c1 = result.c1.mul_by_base_prime_field(elem);
444 result
445 }
446}
447
448impl<P: QuadExtConfig> Ord for QuadExtField<P> {
450 #[inline(always)]
451 fn cmp(&self, other: &Self) -> Ordering {
452 match self.c1.cmp(&other.c1) {
453 Ordering::Greater => Ordering::Greater,
454 Ordering::Less => Ordering::Less,
455 Ordering::Equal => self.c0.cmp(&other.c0),
456 }
457 }
458}
459
460impl<P: QuadExtConfig> PartialOrd for QuadExtField<P> {
461 #[inline(always)]
462 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
463 Some(self.cmp(other))
464 }
465}
466
467impl<P: QuadExtConfig> Zeroize for QuadExtField<P> {
468 fn zeroize(&mut self) {
471 self.c0.zeroize();
472 self.c1.zeroize();
473 }
474}
475
476impl<P: QuadExtConfig> From<u128> for QuadExtField<P> {
477 fn from(other: u128) -> Self {
478 Self::new(other.into(), P::BaseField::ZERO)
479 }
480}
481
482impl<P: QuadExtConfig> From<i128> for QuadExtField<P> {
483 #[inline]
484 fn from(val: i128) -> Self {
485 let abs = Self::from(val.unsigned_abs());
486 if val.is_positive() {
487 abs
488 } else {
489 -abs
490 }
491 }
492}
493
494impl<P: QuadExtConfig> From<u64> for QuadExtField<P> {
495 fn from(other: u64) -> Self {
496 Self::new(other.into(), P::BaseField::ZERO)
497 }
498}
499
500impl<P: QuadExtConfig> From<i64> for QuadExtField<P> {
501 #[inline]
502 fn from(val: i64) -> Self {
503 let abs = Self::from(val.unsigned_abs());
504 if val.is_positive() {
505 abs
506 } else {
507 -abs
508 }
509 }
510}
511
512impl<P: QuadExtConfig> From<u32> for QuadExtField<P> {
513 fn from(other: u32) -> Self {
514 Self::new(other.into(), P::BaseField::ZERO)
515 }
516}
517
518impl<P: QuadExtConfig> From<i32> for QuadExtField<P> {
519 #[inline]
520 fn from(val: i32) -> Self {
521 let abs = Self::from(val.unsigned_abs());
522 if val.is_positive() {
523 abs
524 } else {
525 -abs
526 }
527 }
528}
529
530impl<P: QuadExtConfig> From<u16> for QuadExtField<P> {
531 fn from(other: u16) -> Self {
532 Self::new(other.into(), P::BaseField::ZERO)
533 }
534}
535
536impl<P: QuadExtConfig> From<i16> for QuadExtField<P> {
537 #[inline]
538 fn from(val: i16) -> Self {
539 let abs = Self::from(val.unsigned_abs());
540 if val.is_positive() {
541 abs
542 } else {
543 -abs
544 }
545 }
546}
547
548impl<P: QuadExtConfig> From<u8> for QuadExtField<P> {
549 fn from(other: u8) -> Self {
550 Self::new(other.into(), P::BaseField::ZERO)
551 }
552}
553
554impl<P: QuadExtConfig> From<i8> for QuadExtField<P> {
555 #[inline]
556 fn from(val: i8) -> Self {
557 let abs = Self::from(val.unsigned_abs());
558 if val.is_positive() {
559 abs
560 } else {
561 -abs
562 }
563 }
564}
565
566impl<P: QuadExtConfig> From<bool> for QuadExtField<P> {
567 fn from(other: bool) -> Self {
568 Self::new(u8::from(other).into(), P::BaseField::ZERO)
569 }
570}
571
572impl<P: QuadExtConfig> Neg for QuadExtField<P> {
573 type Output = Self;
574 #[inline]
575 #[must_use]
576 fn neg(mut self) -> Self {
577 self.c0.neg_in_place();
578 self.c1.neg_in_place();
579 self
580 }
581}
582
583impl<P: QuadExtConfig> Distribution<QuadExtField<P>> for Standard {
584 #[inline]
585 fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> QuadExtField<P> {
586 QuadExtField::new(UniformRand::rand(rng), UniformRand::rand(rng))
587 }
588}
589
590impl<'a, P: QuadExtConfig> Add<&'a QuadExtField<P>> for QuadExtField<P> {
591 type Output = Self;
592
593 #[inline]
594 fn add(mut self, other: &Self) -> Self {
595 self += other;
596 self
597 }
598}
599
600impl<'a, P: QuadExtConfig> Sub<&'a QuadExtField<P>> for QuadExtField<P> {
601 type Output = Self;
602
603 #[inline(always)]
604 fn sub(mut self, other: &Self) -> Self {
605 self -= other;
606 self
607 }
608}
609
610impl<'a, P: QuadExtConfig> Mul<&'a QuadExtField<P>> for QuadExtField<P> {
611 type Output = Self;
612
613 #[inline(always)]
614 fn mul(mut self, other: &Self) -> Self {
615 self *= other;
616 self
617 }
618}
619
620impl<'a, P: QuadExtConfig> Div<&'a QuadExtField<P>> for QuadExtField<P> {
621 type Output = Self;
622
623 #[inline]
624 fn div(mut self, other: &Self) -> Self {
625 self.mul_assign(&other.inverse().unwrap());
626 self
627 }
628}
629
630impl<'a, P: QuadExtConfig> AddAssign<&'a Self> for QuadExtField<P> {
631 #[inline]
632 fn add_assign(&mut self, other: &Self) {
633 self.c0 += &other.c0;
634 self.c1 += &other.c1;
635 }
636}
637
638impl<'a, P: QuadExtConfig> SubAssign<&'a Self> for QuadExtField<P> {
639 #[inline]
640 fn sub_assign(&mut self, other: &Self) {
641 self.c0 -= &other.c0;
642 self.c1 -= &other.c1;
643 }
644}
645
646impl_additive_ops_from_ref!(QuadExtField, QuadExtConfig);
647impl_multiplicative_ops_from_ref!(QuadExtField, QuadExtConfig);
648
649impl<'a, P: QuadExtConfig> MulAssign<&'a Self> for QuadExtField<P> {
650 #[inline]
651 fn mul_assign(&mut self, other: &Self) {
652 if Self::extension_degree() == 2 {
653 let c1_input = [self.c0, self.c1];
654 P::mul_base_field_by_nonresidue_in_place(&mut self.c1);
655 *self = Self::new(
656 P::BaseField::sum_of_products(&[self.c0, self.c1], &[other.c0, other.c1]),
657 P::BaseField::sum_of_products(&c1_input, &[other.c1, other.c0]),
658 )
659 } else {
660 let mut v0 = self.c0;
663 v0 *= &other.c0;
664 let mut v1 = self.c1;
665 v1 *= &other.c1;
666
667 self.c1 += &self.c0;
668 self.c1 *= &(other.c0 + &other.c1);
669 self.c1 -= &v0;
670 self.c1 -= &v1;
671 self.c0 = v1;
672 P::mul_base_field_by_nonresidue_and_add(&mut self.c0, &v0);
673 }
674 }
675}
676
677impl<'a, P: QuadExtConfig> DivAssign<&'a Self> for QuadExtField<P> {
678 #[inline]
679 fn div_assign(&mut self, other: &Self) {
680 self.mul_assign(&other.inverse().unwrap());
681 }
682}
683
684impl<P: QuadExtConfig> fmt::Display for QuadExtField<P> {
685 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
686 write!(f, "QuadExtField({} + {} * u)", self.c0, self.c1)
687 }
688}
689
690impl<P: QuadExtConfig> CanonicalSerializeWithFlags for QuadExtField<P> {
691 #[inline]
692 fn serialize_with_flags<W: Write, F: Flags>(
693 &self,
694 mut writer: W,
695 flags: F,
696 ) -> Result<(), SerializationError> {
697 self.c0.serialize_compressed(&mut writer)?;
698 self.c1.serialize_with_flags(&mut writer, flags)?;
699 Ok(())
700 }
701
702 #[inline]
703 fn serialized_size_with_flags<F: Flags>(&self) -> usize {
704 self.c0.compressed_size() + self.c1.serialized_size_with_flags::<F>()
705 }
706}
707
708impl<P: QuadExtConfig> CanonicalSerialize for QuadExtField<P> {
709 #[inline]
710 fn serialize_with_mode<W: Write>(
711 &self,
712 writer: W,
713 _compress: Compress,
714 ) -> Result<(), SerializationError> {
715 self.serialize_with_flags(writer, EmptyFlags)
716 }
717
718 #[inline]
719 fn serialized_size(&self, _compress: Compress) -> usize {
720 self.serialized_size_with_flags::<EmptyFlags>()
721 }
722}
723
724impl<P: QuadExtConfig> CanonicalDeserializeWithFlags for QuadExtField<P> {
725 #[inline]
726 fn deserialize_with_flags<R: Read, F: Flags>(
727 mut reader: R,
728 ) -> Result<(Self, F), SerializationError> {
729 let c0 = CanonicalDeserialize::deserialize_compressed(&mut reader)?;
730 let (c1, flags) = CanonicalDeserializeWithFlags::deserialize_with_flags(&mut reader)?;
731 Ok((QuadExtField::new(c0, c1), flags))
732 }
733}
734
735impl<P: QuadExtConfig> Valid for QuadExtField<P> {
736 fn check(&self) -> Result<(), SerializationError> {
737 self.c0.check()?;
738 self.c1.check()
739 }
740}
741
742impl<P: QuadExtConfig> CanonicalDeserialize for QuadExtField<P> {
743 #[inline]
744 fn deserialize_with_mode<R: Read>(
745 mut reader: R,
746 compress: Compress,
747 validate: Validate,
748 ) -> Result<Self, SerializationError> {
749 let c0: P::BaseField =
750 CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
751 let c1: P::BaseField =
752 CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
753 Ok(QuadExtField::new(c0, c1))
754 }
755}
756
757impl<P: QuadExtConfig> ToConstraintField<P::BasePrimeField> for QuadExtField<P>
758where
759 P::BaseField: ToConstraintField<P::BasePrimeField>,
760{
761 fn to_field_elements(&self) -> Option<Vec<P::BasePrimeField>> {
762 let mut res = Vec::new();
763 let mut c0_elems = self.c0.to_field_elements()?;
764 let mut c1_elems = self.c1.to_field_elements()?;
765
766 res.append(&mut c0_elems);
767 res.append(&mut c1_elems);
768
769 Some(res)
770 }
771}
772
773#[cfg(test)]
774mod quad_ext_tests {
775 use super::*;
776 use ark_std::test_rng;
777 use ark_test_curves::{
778 ark_ff::Field,
779 bls12_381::{Fq, Fq2},
780 };
781
782 #[test]
783 fn test_from_base_prime_field_elements() {
784 let ext_degree = Fq2::extension_degree() as usize;
785 let max_num_elems_to_test = 4;
787 for d in 0..max_num_elems_to_test {
788 if d == ext_degree {
789 continue;
790 }
791 let mut random_coeffs = Vec::<Fq>::new();
792 for _ in 0..d {
793 random_coeffs.push(Fq::rand(&mut test_rng()));
794 }
795 let res = Fq2::from_base_prime_field_elems(random_coeffs);
796 assert_eq!(res, None);
797 }
798 let number_of_tests = 10;
801 for _ in 0..number_of_tests {
802 let mut random_coeffs = Vec::<Fq>::new();
803 for _ in 0..ext_degree {
804 random_coeffs.push(Fq::rand(&mut test_rng()));
805 }
806 let expected = Fq2::new(random_coeffs[0], random_coeffs[1]);
807 let actual = Fq2::from_base_prime_field_elems(random_coeffs).unwrap();
808 assert_eq!(actual, expected);
809 }
810 }
811
812 #[test]
813 fn test_from_base_prime_field_element() {
814 let ext_degree = Fq2::extension_degree() as usize;
815 let max_num_elems_to_test = 10;
816 for _ in 0..max_num_elems_to_test {
817 let mut random_coeffs = vec![Fq::zero(); ext_degree];
818 let random_coeff = Fq::rand(&mut test_rng());
819 let res = Fq2::from_base_prime_field(random_coeff);
820 random_coeffs[0] = random_coeff;
821 assert_eq!(
822 res,
823 Fq2::from_base_prime_field_elems(random_coeffs).unwrap()
824 );
825 }
826 }
827}
828
829impl<P: QuadExtConfig> FftField for QuadExtField<P>
830where
831 P::BaseField: FftField,
832{
833 const GENERATOR: Self = Self::new(P::BaseField::GENERATOR, P::BaseField::ZERO);
834 const TWO_ADICITY: u32 = P::BaseField::TWO_ADICITY;
835 const TWO_ADIC_ROOT_OF_UNITY: Self =
836 Self::new(P::BaseField::TWO_ADIC_ROOT_OF_UNITY, P::BaseField::ZERO);
837 const SMALL_SUBGROUP_BASE: Option<u32> = P::BaseField::SMALL_SUBGROUP_BASE;
838 const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = P::BaseField::SMALL_SUBGROUP_BASE_ADICITY;
839 const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Self> =
840 if let Some(x) = P::BaseField::LARGE_SUBGROUP_ROOT_OF_UNITY {
841 Some(Self::new(x, P::BaseField::ZERO))
842 } else {
843 None
844 };
845}