ark_ff/fields/models/fp2.rs
1use super::quadratic_extension::{QuadExtConfig, QuadExtField};
2use crate::{fields::PrimeField, CyclotomicMultSubgroup, Zero};
3use core::{marker::PhantomData, ops::Not};
4
5/// Trait that specifies constants and methods for defining degree-two extension fields.
6pub trait Fp2Config: 'static + Send + Sync + Sized {
7 /// Base prime field underlying this extension.
8 type Fp: PrimeField;
9
10 /// Quadratic non-residue in [`Self::Fp`] used to construct the extension
11 /// field. That is, `NONRESIDUE` is such that the quadratic polynomial
12 /// `f(X) = X^2 - Self::NONRESIDUE` in Fp\[X\] is irreducible in `Self::Fp`.
13 const NONRESIDUE: Self::Fp;
14
15 /// Coefficients for the Frobenius automorphism.
16 const FROBENIUS_COEFF_FP2_C1: &'static [Self::Fp];
17
18 /// Return `fe * Self::NONRESIDUE`.
19 /// Intended for specialization when [`Self::NONRESIDUE`] has a special
20 /// structure that can speed up multiplication
21 #[inline(always)]
22 fn mul_fp_by_nonresidue_in_place(fe: &mut Self::Fp) -> &mut Self::Fp {
23 *fe *= Self::NONRESIDUE;
24 fe
25 }
26
27 /// A specializable method for setting `y = x + NONRESIDUE * y`.
28 /// This allows for optimizations when the non-residue is
29 /// canonically negative in the field.
30 #[inline(always)]
31 fn mul_fp_by_nonresidue_and_add(y: &mut Self::Fp, x: &Self::Fp) {
32 Self::mul_fp_by_nonresidue_in_place(y);
33 *y += x;
34 }
35
36 /// A specializable method for computing x + mul_fp_by_nonresidue(y) + y
37 /// This allows for optimizations when the non-residue is not -1.
38 #[inline(always)]
39 fn mul_fp_by_nonresidue_plus_one_and_add(y: &mut Self::Fp, x: &Self::Fp) {
40 let old_y = *y;
41 Self::mul_fp_by_nonresidue_and_add(y, x);
42 *y += old_y;
43 }
44
45 /// A specializable method for computing x - mul_fp_by_nonresidue(y)
46 /// This allows for optimizations when the non-residue is
47 /// canonically negative in the field.
48 #[inline(always)]
49 fn sub_and_mul_fp_by_nonresidue(y: &mut Self::Fp, x: &Self::Fp) {
50 *y = *x - Self::mul_fp_by_nonresidue_in_place(y);
51 }
52}
53
54/// Wrapper for [`Fp2Config`], allowing combination of the [`Fp2Config`] and [`QuadExtConfig`] traits.
55pub struct Fp2ConfigWrapper<P: Fp2Config>(PhantomData<P>);
56
57impl<P: Fp2Config> QuadExtConfig for Fp2ConfigWrapper<P> {
58 type BasePrimeField = P::Fp;
59 type BaseField = P::Fp;
60 type FrobCoeff = P::Fp;
61
62 const DEGREE_OVER_BASE_PRIME_FIELD: usize = 2;
63
64 const NONRESIDUE: Self::BaseField = P::NONRESIDUE;
65
66 const FROBENIUS_COEFF_C1: &'static [Self::FrobCoeff] = P::FROBENIUS_COEFF_FP2_C1;
67
68 #[inline(always)]
69 fn mul_base_field_by_nonresidue_in_place(fe: &mut Self::BaseField) -> &mut Self::BaseField {
70 P::mul_fp_by_nonresidue_in_place(fe)
71 }
72
73 #[inline(always)]
74 fn mul_base_field_by_nonresidue_and_add(y: &mut Self::BaseField, x: &Self::BaseField) {
75 P::mul_fp_by_nonresidue_and_add(y, x)
76 }
77
78 #[inline(always)]
79 fn mul_base_field_by_nonresidue_plus_one_and_add(y: &mut Self::BaseField, x: &Self::BaseField) {
80 P::mul_fp_by_nonresidue_plus_one_and_add(y, x)
81 }
82
83 #[inline(always)]
84 fn sub_and_mul_base_field_by_nonresidue(y: &mut Self::BaseField, x: &Self::BaseField) {
85 P::sub_and_mul_fp_by_nonresidue(y, x)
86 }
87
88 fn mul_base_field_by_frob_coeff(fe: &mut Self::BaseField, power: usize) {
89 *fe *= &Self::FROBENIUS_COEFF_C1[power % Self::DEGREE_OVER_BASE_PRIME_FIELD];
90 }
91}
92
93/// Alias for instances of quadratic extension fields. Helpful for omitting verbose
94/// instantiations involving `Fp2ConfigWrapper`.
95pub type Fp2<P> = QuadExtField<Fp2ConfigWrapper<P>>;
96
97impl<P: Fp2Config> Fp2<P> {
98 /// In-place multiply both coefficients `c0` and `c1` of `self`
99 /// by an element from [`Fp`](`Fp2Config::Fp`).
100 ///
101 /// # Examples
102 ///
103 /// ```
104 /// # use ark_std::test_rng;
105 /// # use ark_test_curves::bls12_381::{Fq as Fp, Fq2 as Fp2};
106 /// # use ark_std::UniformRand;
107 /// let c0: Fp = Fp::rand(&mut test_rng());
108 /// let c1: Fp = Fp::rand(&mut test_rng());
109 /// let mut ext_element: Fp2 = Fp2::new(c0, c1);
110 ///
111 /// let base_field_element: Fp = Fp::rand(&mut test_rng());
112 /// ext_element.mul_assign_by_fp(&base_field_element);
113 ///
114 /// assert_eq!(ext_element.c0, c0 * base_field_element);
115 /// assert_eq!(ext_element.c1, c1 * base_field_element);
116 /// ```
117 pub fn mul_assign_by_fp(&mut self, other: &P::Fp) {
118 self.c0 *= other;
119 self.c1 *= other;
120 }
121}
122
123impl<P: Fp2Config> CyclotomicMultSubgroup for Fp2<P> {
124 const INVERSE_IS_FAST: bool = true;
125 fn cyclotomic_inverse_in_place(&mut self) -> Option<&mut Self> {
126 // As the multiplicative subgroup is of order p^2 - 1, the
127 // only non-trivial cyclotomic subgroup is of order p+1
128 // Therefore, for any element in the cyclotomic subgroup, we have that `x^(p+1) = 1`.
129 // Recall that `x^(p+1)` in a quadratic extension field is equal
130 // to the norm in the base field, so we have that
131 // `x * x.conjugate() = 1`. By uniqueness of inverses,
132 // for this subgroup, x.inverse() = x.conjugate()
133
134 self.is_zero().not().then(|| {
135 self.conjugate_in_place();
136 self
137 })
138 }
139}