ark_ff/fields/models/
cubic_extension.rs

1use crate::{
2    fields::{Field, PrimeField},
3    AdditiveGroup, FftField, LegendreSymbol, One, SqrtPrecomputation, ToConstraintField,
4    UniformRand, Zero,
5};
6use ark_serialize::{
7    CanonicalDeserialize, CanonicalDeserializeWithFlags, CanonicalSerialize,
8    CanonicalSerializeWithFlags, Compress, EmptyFlags, Flags, SerializationError, Valid, Validate,
9};
10use ark_std::{
11    cmp::*,
12    fmt,
13    io::{Read, Write},
14    iter::*,
15    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign},
16    rand::{
17        distributions::{Distribution, Standard},
18        Rng,
19    },
20    vec::*,
21};
22use zeroize::Zeroize;
23
24/// Defines a Cubic extension field from a cubic non-residue.
25pub trait CubicExtConfig: 'static + Send + Sync + Sized {
26    /// The prime field that this cubic extension is eventually an extension of.
27    type BasePrimeField: PrimeField;
28    /// The base field that this field is a cubic extension of.
29    ///
30    /// Note: while for simple instances of cubic extensions such as `Fp3`
31    /// we might see `BaseField == BasePrimeField`, it won't always hold true.
32    /// E.g. for an extension tower: `BasePrimeField == Fp`, but `BaseField == Fp2`.
33    type BaseField: Field<BasePrimeField = Self::BasePrimeField>;
34    /// The type of the coefficients for an efficient implementation of the
35    /// Frobenius endomorphism.
36    type FrobCoeff: Field;
37
38    /// Determines the algorithm for computing square roots.
39    const SQRT_PRECOMP: Option<SqrtPrecomputation<CubicExtField<Self>>>;
40
41    /// The degree of the extension over the base prime field.
42    const DEGREE_OVER_BASE_PRIME_FIELD: usize;
43
44    /// The cubic non-residue used to construct the extension.
45    const NONRESIDUE: Self::BaseField;
46
47    /// Coefficients for the Frobenius automorphism.
48    const FROBENIUS_COEFF_C1: &'static [Self::FrobCoeff];
49    const FROBENIUS_COEFF_C2: &'static [Self::FrobCoeff];
50
51    /// A specializable method for multiplying an element of the base field by
52    /// the quadratic non-residue. This is used in multiplication and squaring.
53    #[inline(always)]
54    fn mul_base_field_by_nonresidue_in_place(fe: &mut Self::BaseField) -> &mut Self::BaseField {
55        *fe *= &Self::NONRESIDUE;
56        fe
57    }
58
59    /// A defaulted method for multiplying an element of the base field by
60    /// the quadratic non-residue. This is used in multiplication and squaring.
61    #[inline(always)]
62    fn mul_base_field_by_nonresidue(mut fe: Self::BaseField) -> Self::BaseField {
63        Self::mul_base_field_by_nonresidue_in_place(&mut fe);
64        fe
65    }
66
67    /// A specializable method for multiplying an element of the base field by
68    /// the appropriate Frobenius coefficient.
69    fn mul_base_field_by_frob_coeff(
70        c1: &mut Self::BaseField,
71        c2: &mut Self::BaseField,
72        power: usize,
73    );
74}
75
76/// An element of a cubic extension field F_p\[X\]/(X^3 - P::NONRESIDUE) is
77/// represented as c0 + c1 * X + c2 * X^2, for c0, c1, c2 in `P::BaseField`.
78#[derive(Educe)]
79#[educe(Default, Hash, Clone, Copy, Debug, PartialEq, Eq)]
80pub struct CubicExtField<P: CubicExtConfig> {
81    pub c0: P::BaseField,
82    pub c1: P::BaseField,
83    pub c2: P::BaseField,
84}
85
86impl<P: CubicExtConfig> CubicExtField<P> {
87    /// Create a new field element from coefficients `c0`, `c1` and `c2`
88    /// so that the result is of the form `c0 + c1 * X + c2 * X^2`.
89    ///
90    /// # Examples
91    ///
92    /// ```
93    /// # use ark_std::test_rng;
94    /// # use ark_test_curves::bls12_381::{Fq2 as Fp2, Fq6 as Fp6};
95    /// # use ark_test_curves::bls12_381::Fq6Config;
96    /// # use ark_std::UniformRand;
97    /// # use ark_ff::models::fp6_3over2::Fp6ConfigWrapper;
98    /// use ark_ff::models::cubic_extension::CubicExtField;
99    ///
100    /// let c0: Fp2 = Fp2::rand(&mut test_rng());
101    /// let c1: Fp2 = Fp2::rand(&mut test_rng());
102    /// let c2: Fp2 = Fp2::rand(&mut test_rng());
103    /// # type Config = Fp6ConfigWrapper<Fq6Config>;
104    /// // `Fp6` a degree-3 extension over `Fp2`.
105    /// let c: CubicExtField<Config> = Fp6::new(c0, c1, c2);
106    /// ```
107    pub const fn new(c0: P::BaseField, c1: P::BaseField, c2: P::BaseField) -> Self {
108        Self { c0, c1, c2 }
109    }
110
111    pub fn mul_assign_by_base_field(&mut self, value: &P::BaseField) {
112        self.c0.mul_assign(value);
113        self.c1.mul_assign(value);
114        self.c2.mul_assign(value);
115    }
116
117    /// Calculate the norm of an element with respect to the base field
118    /// `P::BaseField`. The norm maps an element `a` in the extension field
119    /// `Fq^m` to an element in the BaseField `Fq`.
120    /// `Norm(a) = a * a^q * a^(q^2)`
121    pub fn norm(&self) -> P::BaseField {
122        // w.r.t to BaseField, we need the 0th, 1st & 2nd powers of `q`
123        // Since Frobenius coefficients on the towered extensions are
124        // indexed w.r.t. to BasePrimeField, we need to calculate the correct index.
125        let index_multiplier = P::BaseField::extension_degree() as usize;
126        let mut self_to_p = *self;
127        self_to_p.frobenius_map_in_place(index_multiplier);
128        let mut self_to_p2 = *self;
129        self_to_p2.frobenius_map_in_place(2 * index_multiplier);
130        self_to_p *= &(self_to_p2 * self);
131        assert!(self_to_p.c1.is_zero() && self_to_p.c2.is_zero());
132        self_to_p.c0
133    }
134}
135
136impl<P: CubicExtConfig> Zero for CubicExtField<P> {
137    fn zero() -> Self {
138        Self::new(P::BaseField::ZERO, P::BaseField::ZERO, P::BaseField::ZERO)
139    }
140
141    fn is_zero(&self) -> bool {
142        self.c0.is_zero() && self.c1.is_zero() && self.c2.is_zero()
143    }
144}
145
146impl<P: CubicExtConfig> One for CubicExtField<P> {
147    fn one() -> Self {
148        Self::new(P::BaseField::ONE, P::BaseField::ZERO, P::BaseField::ZERO)
149    }
150
151    fn is_one(&self) -> bool {
152        self.c0.is_one() && self.c1.is_zero() && self.c2.is_zero()
153    }
154}
155
156impl<P: CubicExtConfig> AdditiveGroup for CubicExtField<P> {
157    type Scalar = Self;
158
159    const ZERO: Self = Self::new(P::BaseField::ZERO, P::BaseField::ZERO, P::BaseField::ZERO);
160
161    fn double(&self) -> Self {
162        let mut result = *self;
163        result.double_in_place();
164        result
165    }
166
167    fn double_in_place(&mut self) -> &mut Self {
168        self.c0.double_in_place();
169        self.c1.double_in_place();
170        self.c2.double_in_place();
171        self
172    }
173
174    fn neg_in_place(&mut self) -> &mut Self {
175        self.c0.neg_in_place();
176        self.c1.neg_in_place();
177        self.c2.neg_in_place();
178        self
179    }
180}
181
182impl<P: CubicExtConfig> Field for CubicExtField<P> {
183    type BasePrimeField = P::BasePrimeField;
184
185    const SQRT_PRECOMP: Option<SqrtPrecomputation<Self>> = P::SQRT_PRECOMP;
186
187    const ONE: Self = Self::new(P::BaseField::ONE, P::BaseField::ZERO, P::BaseField::ZERO);
188
189    fn extension_degree() -> u64 {
190        3 * P::BaseField::extension_degree()
191    }
192
193    fn from_base_prime_field(elem: Self::BasePrimeField) -> Self {
194        let fe = P::BaseField::from_base_prime_field(elem);
195        Self::new(fe, P::BaseField::ZERO, P::BaseField::ZERO)
196    }
197
198    fn to_base_prime_field_elements(&self) -> impl Iterator<Item = Self::BasePrimeField> {
199        self.c0
200            .to_base_prime_field_elements()
201            .chain(self.c1.to_base_prime_field_elements())
202            .chain(self.c2.to_base_prime_field_elements())
203    }
204
205    fn from_base_prime_field_elems(
206        elems: impl IntoIterator<Item = Self::BasePrimeField>,
207    ) -> Option<Self> {
208        let mut elems = elems.into_iter();
209        let elems = elems.by_ref();
210        let base_ext_deg = P::BaseField::extension_degree() as usize;
211        let element = Some(Self::new(
212            P::BaseField::from_base_prime_field_elems(elems.take(base_ext_deg))?,
213            P::BaseField::from_base_prime_field_elems(elems.take(base_ext_deg))?,
214            P::BaseField::from_base_prime_field_elems(elems.take(base_ext_deg))?,
215        ));
216        if elems.next().is_some() {
217            None
218        } else {
219            element
220        }
221    }
222
223    #[inline]
224    fn from_random_bytes_with_flags<F: Flags>(bytes: &[u8]) -> Option<(Self, F)> {
225        let split_at = bytes.len() / 3;
226        if let Some(c0) = P::BaseField::from_random_bytes(&bytes[..split_at]) {
227            if let Some(c1) = P::BaseField::from_random_bytes(&bytes[split_at..2 * split_at]) {
228                if let Some((c2, flags)) =
229                    P::BaseField::from_random_bytes_with_flags(&bytes[2 * split_at..])
230                {
231                    return Some((CubicExtField::new(c0, c1, c2), flags));
232                }
233            }
234        }
235        None
236    }
237
238    #[inline]
239    fn from_random_bytes(bytes: &[u8]) -> Option<Self> {
240        Self::from_random_bytes_with_flags::<EmptyFlags>(bytes).map(|f| f.0)
241    }
242
243    fn square(&self) -> Self {
244        let mut result = *self;
245        result.square_in_place();
246        result
247    }
248
249    fn square_in_place(&mut self) -> &mut Self {
250        // Devegili OhEig Scott Dahab --- Multiplication and Squaring on
251        // AbstractPairing-Friendly
252        // Fields.pdf; Section 4 (CH-SQR2)
253        let a = self.c0;
254        let b = self.c1;
255        let c = self.c2;
256
257        let s0 = a.square();
258        let ab = a * &b;
259        let s1 = ab.double();
260        let s2 = (a - &b + &c).square();
261        let bc = b * &c;
262        let s3 = bc.double();
263        let s4 = c.square();
264
265        // c0 = s0 + s3 * NON_RESIDUE
266        self.c0 = s3;
267        P::mul_base_field_by_nonresidue_in_place(&mut self.c0);
268        self.c0 += &s0;
269
270        // c1 = s1 + s4 * NON_RESIDUE
271        self.c1 = s4;
272        P::mul_base_field_by_nonresidue_in_place(&mut self.c1);
273        self.c1 += &s1;
274
275        self.c2 = s1 + &s2 + &s3 - &s0 - &s4;
276        self
277    }
278
279    /// Returns the Legendre symbol.
280    fn legendre(&self) -> LegendreSymbol {
281        self.norm().legendre()
282    }
283
284    fn inverse(&self) -> Option<Self> {
285        if self.is_zero() {
286            None
287        } else {
288            // From "High-Speed Software Implementation of the Optimal Ate AbstractPairing
289            // over
290            // Barreto-Naehrig Curves"; Algorithm 17
291            let t0 = self.c0.square();
292            let t1 = self.c1.square();
293            let t2 = self.c2.square();
294            let t3 = self.c0 * &self.c1;
295            let t4 = self.c0 * &self.c2;
296            let t5 = self.c1 * &self.c2;
297            let n5 = P::mul_base_field_by_nonresidue(t5);
298
299            let s0 = t0 - &n5;
300            let s1 = P::mul_base_field_by_nonresidue(t2) - &t3;
301            let s2 = t1 - &t4; // typo in paper referenced above. should be "-" as per Scott, but is "*"
302
303            let a1 = self.c2 * &s1;
304            let a2 = self.c1 * &s2;
305            let mut a3 = a1 + &a2;
306            a3 = P::mul_base_field_by_nonresidue(a3);
307            let t6 = (self.c0 * &s0 + &a3).inverse().unwrap();
308
309            let c0 = t6 * &s0;
310            let c1 = t6 * &s1;
311            let c2 = t6 * &s2;
312
313            Some(Self::new(c0, c1, c2))
314        }
315    }
316
317    fn inverse_in_place(&mut self) -> Option<&mut Self> {
318        if let Some(inverse) = self.inverse() {
319            *self = inverse;
320            Some(self)
321        } else {
322            None
323        }
324    }
325
326    fn frobenius_map_in_place(&mut self, power: usize) {
327        self.c0.frobenius_map_in_place(power);
328        self.c1.frobenius_map_in_place(power);
329        self.c2.frobenius_map_in_place(power);
330
331        P::mul_base_field_by_frob_coeff(&mut self.c1, &mut self.c2, power);
332    }
333
334    fn mul_by_base_prime_field(&self, elem: &Self::BasePrimeField) -> Self {
335        let mut result = *self;
336        result.c0 = result.c0.mul_by_base_prime_field(elem);
337        result.c1 = result.c1.mul_by_base_prime_field(elem);
338        result.c2 = result.c2.mul_by_base_prime_field(elem);
339        result
340    }
341}
342
343/// `CubicExtField` elements are ordered lexicographically.
344impl<P: CubicExtConfig> Ord for CubicExtField<P> {
345    #[inline(always)]
346    fn cmp(&self, other: &Self) -> Ordering {
347        let c2_cmp = self.c2.cmp(&other.c2);
348        let c1_cmp = self.c1.cmp(&other.c1);
349        let c0_cmp = self.c0.cmp(&other.c0);
350        if c2_cmp == Ordering::Equal {
351            if c1_cmp == Ordering::Equal {
352                c0_cmp
353            } else {
354                c1_cmp
355            }
356        } else {
357            c2_cmp
358        }
359    }
360}
361
362impl<P: CubicExtConfig> PartialOrd for CubicExtField<P> {
363    #[inline(always)]
364    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
365        Some(self.cmp(other))
366    }
367}
368
369impl<P: CubicExtConfig> Zeroize for CubicExtField<P> {
370    // The phantom data does not contain element-specific data
371    // and thus does not need to be zeroized.
372    fn zeroize(&mut self) {
373        self.c0.zeroize();
374        self.c1.zeroize();
375        self.c2.zeroize();
376    }
377}
378
379impl<P: CubicExtConfig> From<u128> for CubicExtField<P> {
380    fn from(other: u128) -> Self {
381        let fe: P::BaseField = other.into();
382        Self::new(fe, P::BaseField::ZERO, P::BaseField::ZERO)
383    }
384}
385
386impl<P: CubicExtConfig> From<i128> for CubicExtField<P> {
387    #[inline]
388    fn from(val: i128) -> Self {
389        let abs = Self::from(val.unsigned_abs());
390        if val.is_positive() {
391            abs
392        } else {
393            -abs
394        }
395    }
396}
397
398impl<P: CubicExtConfig> From<u64> for CubicExtField<P> {
399    fn from(other: u64) -> Self {
400        let fe: P::BaseField = other.into();
401        Self::new(fe, P::BaseField::ZERO, P::BaseField::ZERO)
402    }
403}
404
405impl<P: CubicExtConfig> From<i64> for CubicExtField<P> {
406    #[inline]
407    fn from(val: i64) -> Self {
408        let abs = Self::from(val.unsigned_abs());
409        if val.is_positive() {
410            abs
411        } else {
412            -abs
413        }
414    }
415}
416
417impl<P: CubicExtConfig> From<u32> for CubicExtField<P> {
418    fn from(other: u32) -> Self {
419        let fe: P::BaseField = other.into();
420        Self::new(fe, P::BaseField::ZERO, P::BaseField::ZERO)
421    }
422}
423
424impl<P: CubicExtConfig> From<i32> for CubicExtField<P> {
425    #[inline]
426    fn from(val: i32) -> Self {
427        let abs = Self::from(val.unsigned_abs());
428        if val.is_positive() {
429            abs
430        } else {
431            -abs
432        }
433    }
434}
435
436impl<P: CubicExtConfig> From<u16> for CubicExtField<P> {
437    fn from(other: u16) -> Self {
438        let fe: P::BaseField = other.into();
439        Self::new(fe, P::BaseField::ZERO, P::BaseField::ZERO)
440    }
441}
442
443impl<P: CubicExtConfig> From<i16> for CubicExtField<P> {
444    #[inline]
445    fn from(val: i16) -> Self {
446        let abs = Self::from(val.unsigned_abs());
447        if val.is_positive() {
448            abs
449        } else {
450            -abs
451        }
452    }
453}
454
455impl<P: CubicExtConfig> From<u8> for CubicExtField<P> {
456    fn from(other: u8) -> Self {
457        let fe: P::BaseField = other.into();
458        Self::new(fe, P::BaseField::ZERO, P::BaseField::ZERO)
459    }
460}
461
462impl<P: CubicExtConfig> From<i8> for CubicExtField<P> {
463    #[inline]
464    fn from(val: i8) -> Self {
465        let abs = Self::from(val.unsigned_abs());
466        if val.is_positive() {
467            abs
468        } else {
469            -abs
470        }
471    }
472}
473
474impl<P: CubicExtConfig> From<bool> for CubicExtField<P> {
475    fn from(other: bool) -> Self {
476        Self::new(
477            u8::from(other).into(),
478            P::BaseField::ZERO,
479            P::BaseField::ZERO,
480        )
481    }
482}
483
484impl<P: CubicExtConfig> Neg for CubicExtField<P> {
485    type Output = Self;
486    #[inline]
487    fn neg(mut self) -> Self {
488        self.c0.neg_in_place();
489        self.c1.neg_in_place();
490        self.c2.neg_in_place();
491        self
492    }
493}
494
495impl<P: CubicExtConfig> Distribution<CubicExtField<P>> for Standard {
496    #[inline]
497    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> CubicExtField<P> {
498        CubicExtField::new(
499            UniformRand::rand(rng),
500            UniformRand::rand(rng),
501            UniformRand::rand(rng),
502        )
503    }
504}
505
506impl<'a, P: CubicExtConfig> Add<&'a CubicExtField<P>> for CubicExtField<P> {
507    type Output = Self;
508
509    #[inline]
510    fn add(mut self, other: &Self) -> Self {
511        self.add_assign(other);
512        self
513    }
514}
515
516impl<'a, P: CubicExtConfig> Sub<&'a CubicExtField<P>> for CubicExtField<P> {
517    type Output = Self;
518
519    #[inline]
520    fn sub(mut self, other: &Self) -> Self {
521        self.sub_assign(other);
522        self
523    }
524}
525
526impl<'a, P: CubicExtConfig> Mul<&'a CubicExtField<P>> for CubicExtField<P> {
527    type Output = Self;
528
529    #[inline]
530    fn mul(mut self, other: &Self) -> Self {
531        self.mul_assign(other);
532        self
533    }
534}
535
536impl<'a, P: CubicExtConfig> Div<&'a CubicExtField<P>> for CubicExtField<P> {
537    type Output = Self;
538
539    #[inline]
540    fn div(mut self, other: &Self) -> Self {
541        self.mul_assign(&other.inverse().unwrap());
542        self
543    }
544}
545
546impl_additive_ops_from_ref!(CubicExtField, CubicExtConfig);
547impl_multiplicative_ops_from_ref!(CubicExtField, CubicExtConfig);
548impl<'a, P: CubicExtConfig> AddAssign<&'a Self> for CubicExtField<P> {
549    #[inline]
550    fn add_assign(&mut self, other: &Self) {
551        self.c0.add_assign(&other.c0);
552        self.c1.add_assign(&other.c1);
553        self.c2.add_assign(&other.c2);
554    }
555}
556
557impl<'a, P: CubicExtConfig> SubAssign<&'a Self> for CubicExtField<P> {
558    #[inline]
559    fn sub_assign(&mut self, other: &Self) {
560        self.c0.sub_assign(&other.c0);
561        self.c1.sub_assign(&other.c1);
562        self.c2.sub_assign(&other.c2);
563    }
564}
565
566impl<'a, P: CubicExtConfig> MulAssign<&'a Self> for CubicExtField<P> {
567    #[inline]
568    #[allow(clippy::many_single_char_names)]
569    fn mul_assign(&mut self, other: &Self) {
570        // Devegili OhEig Scott Dahab --- Multiplication and Squaring on
571        // AbstractPairing-Friendly
572        // Fields.pdf; Section 4 (Karatsuba)
573
574        let a = other.c0;
575        let b = other.c1;
576        let c = other.c2;
577
578        let d = self.c0;
579        let e = self.c1;
580        let f = self.c2;
581
582        let ad = d * &a;
583        let be = e * &b;
584        let cf = f * &c;
585
586        let x = (e + &f) * &(b + &c) - &be - &cf;
587        let y = (d + &e) * &(a + &b) - &ad - &be;
588        let z = (d + &f) * &(a + &c) - &ad + &be - &cf;
589
590        self.c0 = ad + &P::mul_base_field_by_nonresidue(x);
591        self.c1 = y + &P::mul_base_field_by_nonresidue(cf);
592        self.c2 = z;
593    }
594}
595
596impl<'a, P: CubicExtConfig> DivAssign<&'a Self> for CubicExtField<P> {
597    #[inline]
598    fn div_assign(&mut self, other: &Self) {
599        self.mul_assign(&other.inverse().unwrap());
600    }
601}
602
603impl<P: CubicExtConfig> fmt::Display for CubicExtField<P> {
604    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
605        write!(f, "CubicExtField({}, {}, {})", self.c0, self.c1, self.c2)
606    }
607}
608
609impl<P: CubicExtConfig> CanonicalSerializeWithFlags for CubicExtField<P> {
610    #[inline]
611    fn serialize_with_flags<W: Write, F: Flags>(
612        &self,
613        mut writer: W,
614        flags: F,
615    ) -> Result<(), SerializationError> {
616        self.c0.serialize_compressed(&mut writer)?;
617        self.c1.serialize_compressed(&mut writer)?;
618        self.c2.serialize_with_flags(&mut writer, flags)?;
619        Ok(())
620    }
621
622    #[inline]
623    fn serialized_size_with_flags<F: Flags>(&self) -> usize {
624        self.c0.compressed_size()
625            + self.c1.compressed_size()
626            + self.c2.serialized_size_with_flags::<F>()
627    }
628}
629
630impl<P: CubicExtConfig> CanonicalSerialize for CubicExtField<P> {
631    #[inline]
632    fn serialize_with_mode<W: Write>(
633        &self,
634        writer: W,
635        _compress: Compress,
636    ) -> Result<(), SerializationError> {
637        self.serialize_with_flags(writer, EmptyFlags)
638    }
639
640    #[inline]
641    fn serialized_size(&self, _compress: Compress) -> usize {
642        self.serialized_size_with_flags::<EmptyFlags>()
643    }
644}
645
646impl<P: CubicExtConfig> CanonicalDeserializeWithFlags for CubicExtField<P> {
647    #[inline]
648    fn deserialize_with_flags<R: Read, F: Flags>(
649        mut reader: R,
650    ) -> Result<(Self, F), SerializationError> {
651        let c0 = CanonicalDeserialize::deserialize_compressed(&mut reader)?;
652        let c1 = CanonicalDeserialize::deserialize_compressed(&mut reader)?;
653        let (c2, flags) = CanonicalDeserializeWithFlags::deserialize_with_flags(&mut reader)?;
654        Ok((CubicExtField::new(c0, c1, c2), flags))
655    }
656}
657
658impl<P: CubicExtConfig> Valid for CubicExtField<P> {
659    fn check(&self) -> Result<(), SerializationError> {
660        self.c0.check()?;
661        self.c1.check()?;
662        self.c2.check()
663    }
664}
665
666impl<P: CubicExtConfig> CanonicalDeserialize for CubicExtField<P> {
667    #[inline]
668    fn deserialize_with_mode<R: Read>(
669        mut reader: R,
670        compress: Compress,
671        validate: Validate,
672    ) -> Result<Self, SerializationError> {
673        let c0: P::BaseField =
674            CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
675        let c1: P::BaseField =
676            CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
677        let c2: P::BaseField =
678            CanonicalDeserialize::deserialize_with_mode(&mut reader, compress, validate)?;
679        Ok(CubicExtField::new(c0, c1, c2))
680    }
681}
682
683impl<P: CubicExtConfig> ToConstraintField<P::BasePrimeField> for CubicExtField<P>
684where
685    P::BaseField: ToConstraintField<P::BasePrimeField>,
686{
687    fn to_field_elements(&self) -> Option<Vec<P::BasePrimeField>> {
688        let mut res = Vec::new();
689        let mut c0_elems = self.c0.to_field_elements()?;
690        let mut c1_elems = self.c1.to_field_elements()?;
691        let mut c2_elems = self.c2.to_field_elements()?;
692
693        res.append(&mut c0_elems);
694        res.append(&mut c1_elems);
695        res.append(&mut c2_elems);
696
697        Some(res)
698    }
699}
700
701#[cfg(test)]
702mod cube_ext_tests {
703    use super::*;
704    use ark_std::test_rng;
705    use ark_test_curves::{
706        ark_ff::Field,
707        bls12_381::{Fq, Fq2, Fq6},
708        mnt6_753::Fq3,
709    };
710
711    #[test]
712    fn test_norm_for_towers() {
713        // First, test the simple fp3
714        let mut rng = test_rng();
715        let a: Fq3 = rng.gen();
716        let _ = a.norm();
717
718        // then also the tower 3_over_2, norm should work
719        let a: Fq6 = rng.gen();
720        let _ = a.norm();
721    }
722
723    #[test]
724    fn test_from_base_prime_field_elements() {
725        let ext_degree = Fq6::extension_degree() as usize;
726        // Test on slice lengths that aren't equal to the extension degree
727        let max_num_elems_to_test = 10;
728        for d in 0..max_num_elems_to_test {
729            if d == ext_degree {
730                continue;
731            }
732            let mut random_coeffs = Vec::<Fq>::new();
733            for _ in 0..d {
734                random_coeffs.push(Fq::rand(&mut test_rng()));
735            }
736            let res = Fq6::from_base_prime_field_elems(random_coeffs);
737            assert_eq!(res, None);
738        }
739        // Test on slice lengths that are equal to the extension degree
740        // We test consistency against Fq2::new
741        let number_of_tests = 10;
742        for _ in 0..number_of_tests {
743            let mut random_coeffs = Vec::<Fq>::new();
744            for _ in 0..ext_degree {
745                random_coeffs.push(Fq::rand(&mut test_rng()));
746            }
747
748            let expected_0 = Fq2::new(random_coeffs[0], random_coeffs[1]);
749            let expected_1 = Fq2::new(random_coeffs[2], random_coeffs[3]);
750            let expected_2 = Fq2::new(random_coeffs[3], random_coeffs[4]);
751            let expected = Fq6::new(expected_0, expected_1, expected_2);
752
753            let actual = Fq6::from_base_prime_field_elems(random_coeffs).unwrap();
754            assert_eq!(actual, expected);
755        }
756    }
757
758    #[test]
759    fn test_from_base_prime_field_element() {
760        let ext_degree = Fq6::extension_degree() as usize;
761        let max_num_elems_to_test = 10;
762        for _ in 0..max_num_elems_to_test {
763            let mut random_coeffs = vec![Fq::zero(); ext_degree];
764            let random_coeff = Fq::rand(&mut test_rng());
765            let res = Fq6::from_base_prime_field(random_coeff);
766            random_coeffs[0] = random_coeff;
767            assert_eq!(
768                res,
769                Fq6::from_base_prime_field_elems(random_coeffs).unwrap()
770            );
771        }
772    }
773}
774
775impl<P: CubicExtConfig> FftField for CubicExtField<P>
776where
777    P::BaseField: FftField,
778{
779    const GENERATOR: Self = Self::new(
780        P::BaseField::GENERATOR,
781        P::BaseField::ZERO,
782        P::BaseField::ZERO,
783    );
784    const TWO_ADICITY: u32 = P::BaseField::TWO_ADICITY;
785    const TWO_ADIC_ROOT_OF_UNITY: Self = Self::new(
786        P::BaseField::TWO_ADIC_ROOT_OF_UNITY,
787        P::BaseField::ZERO,
788        P::BaseField::ZERO,
789    );
790    const SMALL_SUBGROUP_BASE: Option<u32> = P::BaseField::SMALL_SUBGROUP_BASE;
791    const SMALL_SUBGROUP_BASE_ADICITY: Option<u32> = P::BaseField::SMALL_SUBGROUP_BASE_ADICITY;
792    const LARGE_SUBGROUP_ROOT_OF_UNITY: Option<Self> =
793        if let Some(x) = P::BaseField::LARGE_SUBGROUP_ROOT_OF_UNITY {
794            Some(Self::new(x, P::BaseField::ZERO, P::BaseField::ZERO))
795        } else {
796            None
797        };
798}