ark_ec/models/twisted_edwards/
affine.rs1use ark_serialize::{
2 CanonicalDeserialize, CanonicalSerialize, Compress, SerializationError, Valid, Validate,
3};
4use ark_std::{
5 borrow::Borrow,
6 fmt::{Debug, Display, Formatter, Result as FmtResult},
7 io::{Read, Write},
8 ops::{Add, Mul, Neg, Sub},
9 rand::{
10 distributions::{Distribution, Standard},
11 Rng,
12 },
13 vec::*,
14};
15use educe::Educe;
16use num_traits::{One, Zero};
17use zeroize::Zeroize;
18
19use ark_ff::{fields::Field, AdditiveGroup, PrimeField, ToConstraintField, UniformRand};
20
21use super::{Projective, TECurveConfig, TEFlags};
22use crate::AffineRepr;
23
24#[derive(Educe)]
27#[educe(Copy, Clone, PartialEq, Eq, Hash)]
28#[must_use]
29pub struct Affine<P: TECurveConfig> {
30 pub x: P::BaseField,
32 pub y: P::BaseField,
34}
35
36impl<P: TECurveConfig> Display for Affine<P> {
37 fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
38 match self.is_zero() {
39 true => write!(f, "infinity"),
40 false => write!(f, "({}, {})", self.x, self.y),
41 }
42 }
43}
44
45impl<P: TECurveConfig> Debug for Affine<P> {
46 fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
47 match self.is_zero() {
48 true => write!(f, "infinity"),
49 false => write!(f, "({}, {})", self.x, self.y),
50 }
51 }
52}
53
54impl<P: TECurveConfig> PartialEq<Projective<P>> for Affine<P> {
55 fn eq(&self, other: &Projective<P>) -> bool {
56 self.into_group() == *other
57 }
58}
59
60impl<P: TECurveConfig> Affine<P> {
61 pub const fn new_unchecked(x: P::BaseField, y: P::BaseField) -> Self {
64 Self { x, y }
65 }
66
67 pub fn new(x: P::BaseField, y: P::BaseField) -> Self {
70 let p = Self::new_unchecked(x, y);
71 assert!(p.is_on_curve());
72 assert!(p.is_in_correct_subgroup_assuming_on_curve());
73 p
74 }
75
76 pub const fn zero() -> Self {
78 Self::new_unchecked(P::BaseField::ZERO, P::BaseField::ONE)
79 }
80
81 pub fn is_zero(&self) -> bool {
83 self.x.is_zero() && self.y.is_one()
84 }
85
86 #[allow(dead_code)]
97 pub fn get_point_from_y_unchecked(y: P::BaseField, greatest: bool) -> Option<Self> {
98 Self::get_xs_from_y_unchecked(y).map(|(x, neg_x)| {
99 if greatest {
100 Self::new_unchecked(neg_x, y)
101 } else {
102 Self::new_unchecked(x, y)
103 }
104 })
105 }
106
107 #[allow(dead_code)]
118 pub fn get_xs_from_y_unchecked(y: P::BaseField) -> Option<(P::BaseField, P::BaseField)> {
119 let y2 = y.square();
120
121 let numerator = P::BaseField::one() - y2;
122 let denominator = P::COEFF_A - (y2 * P::COEFF_D);
123
124 denominator
125 .inverse()
126 .map(|denom| denom * &numerator)
127 .and_then(|x2| x2.sqrt())
128 .map(|x| {
129 let neg_x = -x;
130 if x <= neg_x {
131 (x, neg_x)
132 } else {
133 (neg_x, x)
134 }
135 })
136 }
137
138 pub fn is_on_curve(&self) -> bool {
140 let x2 = self.x.square();
141 let y2 = self.y.square();
142
143 let lhs = y2 + P::mul_by_a(x2);
144 let rhs = P::BaseField::one() + &(P::COEFF_D * &(x2 * &y2));
145
146 lhs == rhs
147 }
148}
149
150impl<P: TECurveConfig> Affine<P> {
151 pub fn is_in_correct_subgroup_assuming_on_curve(&self) -> bool {
154 P::is_in_correct_subgroup_assuming_on_curve(self)
155 }
156}
157
158impl<P: TECurveConfig> AffineRepr for Affine<P> {
159 type Config = P;
160 type BaseField = P::BaseField;
161 type ScalarField = P::ScalarField;
162 type Group = Projective<P>;
163
164 fn xy(&self) -> Option<(Self::BaseField, Self::BaseField)> {
165 (!self.is_zero()).then(|| (self.x, self.y))
166 }
167
168 fn generator() -> Self {
169 P::GENERATOR
170 }
171
172 fn zero() -> Self {
173 Self::new_unchecked(P::BaseField::ZERO, P::BaseField::ONE)
174 }
175
176 fn from_random_bytes(bytes: &[u8]) -> Option<Self> {
177 P::BaseField::from_random_bytes_with_flags::<TEFlags>(bytes)
178 .and_then(|(y, flags)| Self::get_point_from_y_unchecked(y, flags.is_negative()))
179 }
180
181 fn mul_bigint(&self, by: impl AsRef<[u64]>) -> Self::Group {
182 P::mul_affine(self, by.as_ref())
183 }
184
185 #[must_use]
188 fn mul_by_cofactor_to_group(&self) -> Self::Group {
189 P::mul_affine(self, Self::Config::COFACTOR)
190 }
191
192 fn clear_cofactor(&self) -> Self {
196 P::clear_cofactor(self)
197 }
198}
199
200impl<P: TECurveConfig> Zeroize for Affine<P> {
201 fn zeroize(&mut self) {
204 self.x.zeroize();
205 self.y.zeroize();
206 }
207}
208
209impl<P: TECurveConfig> Neg for Affine<P> {
210 type Output = Self;
211
212 fn neg(self) -> Self {
213 Self::new_unchecked(-self.x, self.y)
214 }
215}
216
217impl<P: TECurveConfig, T: Borrow<Self>> Add<T> for Affine<P> {
218 type Output = Projective<P>;
219 fn add(self, other: T) -> Self::Output {
220 let mut copy = self.into_group();
221 copy += other.borrow();
222 copy
223 }
224}
225
226impl<P: TECurveConfig> Add<Projective<P>> for Affine<P> {
227 type Output = Projective<P>;
228 fn add(self, other: Projective<P>) -> Projective<P> {
229 other + self
230 }
231}
232
233impl<'a, P: TECurveConfig> Add<&'a Projective<P>> for Affine<P> {
234 type Output = Projective<P>;
235 fn add(self, other: &'a Projective<P>) -> Projective<P> {
236 *other + self
237 }
238}
239
240impl<P: TECurveConfig, T: Borrow<Self>> Sub<T> for Affine<P> {
241 type Output = Projective<P>;
242 fn sub(self, other: T) -> Self::Output {
243 let mut copy = self.into_group();
244 copy -= other.borrow();
245 copy
246 }
247}
248
249impl<P: TECurveConfig> Sub<Projective<P>> for Affine<P> {
250 type Output = Projective<P>;
251 fn sub(self, other: Projective<P>) -> Projective<P> {
252 self + (-other)
253 }
254}
255
256impl<'a, P: TECurveConfig> Sub<&'a Projective<P>> for Affine<P> {
257 type Output = Projective<P>;
258 fn sub(self, other: &'a Projective<P>) -> Projective<P> {
259 self + (-*other)
260 }
261}
262
263impl<P: TECurveConfig> Default for Affine<P> {
264 #[inline]
265 fn default() -> Self {
266 Self::zero()
267 }
268}
269
270impl<P: TECurveConfig> Distribution<Affine<P>> for Standard {
271 #[inline]
273 fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Affine<P> {
274 loop {
275 let y = P::BaseField::rand(rng);
276 let greatest = rng.gen();
277
278 if let Some(p) = Affine::get_point_from_y_unchecked(y, greatest) {
279 return p.mul_by_cofactor();
280 }
281 }
282 }
283}
284
285impl<P: TECurveConfig, T: Borrow<P::ScalarField>> Mul<T> for Affine<P> {
286 type Output = Projective<P>;
287
288 #[inline]
289 fn mul(self, other: T) -> Self::Output {
290 self.mul_bigint(other.borrow().into_bigint())
291 }
292}
293
294impl<P: TECurveConfig> From<Projective<P>> for Affine<P> {
297 fn from(p: Projective<P>) -> Affine<P> {
298 if p.is_zero() {
299 Affine::zero()
300 } else if p.z.is_one() {
301 Affine::new_unchecked(p.x, p.y)
303 } else {
304 let z_inv = p.z.inverse().unwrap();
306 let x = p.x * &z_inv;
307 let y = p.y * &z_inv;
308 Affine::new_unchecked(x, y)
309 }
310 }
311}
312impl<P: TECurveConfig> CanonicalSerialize for Affine<P> {
313 #[inline]
314 fn serialize_with_mode<W: Write>(
315 &self,
316 writer: W,
317 compress: ark_serialize::Compress,
318 ) -> Result<(), SerializationError> {
319 P::serialize_with_mode(self, writer, compress)
320 }
321
322 #[inline]
323 fn serialized_size(&self, compress: Compress) -> usize {
324 P::serialized_size(compress)
325 }
326}
327
328impl<P: TECurveConfig> Valid for Affine<P> {
329 fn check(&self) -> Result<(), SerializationError> {
330 if self.is_on_curve() && self.is_in_correct_subgroup_assuming_on_curve() {
331 Ok(())
332 } else {
333 Err(SerializationError::InvalidData)
334 }
335 }
336}
337
338impl<P: TECurveConfig> CanonicalDeserialize for Affine<P> {
339 fn deserialize_with_mode<R: Read>(
340 reader: R,
341 compress: Compress,
342 validate: Validate,
343 ) -> Result<Self, SerializationError> {
344 P::deserialize_with_mode(reader, compress, validate)
345 }
346}
347
348impl<M: TECurveConfig, ConstraintF: Field> ToConstraintField<ConstraintF> for Affine<M>
349where
350 M::BaseField: ToConstraintField<ConstraintF>,
351{
352 #[inline]
353 fn to_field_elements(&self) -> Option<Vec<ConstraintF>> {
354 let mut x_fe = self.x.to_field_elements()?;
355 let y_fe = self.y.to_field_elements()?;
356 x_fe.extend_from_slice(&y_fe);
357 Some(x_fe)
358 }
359}