ark_ec/models/short_weierstrass/
affine.rs1use ark_serialize::{
2 CanonicalDeserialize, CanonicalSerialize, Compress, SerializationError, Valid, Validate,
3};
4use ark_std::{
5 borrow::Borrow,
6 fmt::{Debug, Display, Formatter, Result as FmtResult},
7 io::{Read, Write},
8 ops::{Add, Mul, Neg, Sub},
9 rand::{
10 distributions::{Distribution, Standard},
11 Rng,
12 },
13 vec::*,
14 One, Zero,
15};
16
17use ark_ff::{fields::Field, AdditiveGroup, PrimeField, ToConstraintField, UniformRand};
18
19use educe::Educe;
20use zeroize::Zeroize;
21
22use super::{Projective, SWCurveConfig, SWFlags};
23use crate::AffineRepr;
24
25#[derive(Educe)]
28#[educe(Copy, Clone, PartialEq, Eq, Hash)]
29#[must_use]
30pub struct Affine<P: SWCurveConfig> {
31 #[doc(hidden)]
32 pub x: P::BaseField,
33 #[doc(hidden)]
34 pub y: P::BaseField,
35 #[doc(hidden)]
36 pub infinity: bool,
37}
38
39impl<P: SWCurveConfig> PartialEq<Projective<P>> for Affine<P> {
40 fn eq(&self, other: &Projective<P>) -> bool {
41 self.into_group() == *other
42 }
43}
44
45impl<P: SWCurveConfig> Display for Affine<P> {
46 fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
47 match self.infinity {
48 true => write!(f, "infinity"),
49 false => write!(f, "({}, {})", self.x, self.y),
50 }
51 }
52}
53
54impl<P: SWCurveConfig> Debug for Affine<P> {
55 fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
56 match self.infinity {
57 true => write!(f, "infinity"),
58 false => write!(f, "({}, {})", self.x, self.y),
59 }
60 }
61}
62
63impl<P: SWCurveConfig> Affine<P> {
64 pub fn new(x: P::BaseField, y: P::BaseField) -> Self {
67 let point = Self {
68 x,
69 y,
70 infinity: false,
71 };
72 assert!(point.is_on_curve());
73 assert!(point.is_in_correct_subgroup_assuming_on_curve());
74 point
75 }
76
77 pub const fn new_unchecked(x: P::BaseField, y: P::BaseField) -> Self {
84 Self {
85 x,
86 y,
87 infinity: false,
88 }
89 }
90
91 pub const fn identity() -> Self {
92 Self {
93 x: P::BaseField::ZERO,
94 y: P::BaseField::ZERO,
95 infinity: true,
96 }
97 }
98
99 #[allow(dead_code)]
105 pub fn get_point_from_x_unchecked(x: P::BaseField, greatest: bool) -> Option<Self> {
106 Self::get_ys_from_x_unchecked(x).map(|(smaller, larger)| {
107 if greatest {
108 Self::new_unchecked(x, larger)
109 } else {
110 Self::new_unchecked(x, smaller)
111 }
112 })
113 }
114
115 pub fn get_ys_from_x_unchecked(x: P::BaseField) -> Option<(P::BaseField, P::BaseField)> {
123 let mut x3_plus_ax_plus_b = P::add_b(x.square() * x);
127 if !P::COEFF_A.is_zero() {
128 x3_plus_ax_plus_b += P::mul_by_a(x)
129 };
130 let y = x3_plus_ax_plus_b.sqrt()?;
131 let neg_y = -y;
132 match y < neg_y {
133 true => Some((y, neg_y)),
134 false => Some((neg_y, y)),
135 }
136 }
137
138 pub fn is_on_curve(&self) -> bool {
140 if !self.infinity {
141 let mut x3b = P::add_b(self.x.square() * self.x);
143 if !P::COEFF_A.is_zero() {
144 x3b += P::mul_by_a(self.x);
145 };
146 self.y.square() == x3b
147 } else {
148 true
149 }
150 }
151
152 pub fn to_flags(&self) -> SWFlags {
153 if self.infinity {
154 SWFlags::PointAtInfinity
155 } else if self.y <= -self.y {
156 SWFlags::YIsPositive
157 } else {
158 SWFlags::YIsNegative
159 }
160 }
161}
162
163impl<P: SWCurveConfig> Affine<P> {
164 pub fn is_in_correct_subgroup_assuming_on_curve(&self) -> bool {
168 P::is_in_correct_subgroup_assuming_on_curve(self)
169 }
170}
171
172impl<P: SWCurveConfig> Zeroize for Affine<P> {
173 fn zeroize(&mut self) {
176 self.x.zeroize();
177 self.y.zeroize();
178 self.infinity.zeroize();
179 }
180}
181
182impl<P: SWCurveConfig> Distribution<Affine<P>> for Standard {
183 #[inline]
185 fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Affine<P> {
186 loop {
187 let x = P::BaseField::rand(rng);
188 let greatest = rng.gen();
189
190 if let Some(p) = Affine::get_point_from_x_unchecked(x, greatest) {
191 return p.mul_by_cofactor();
192 }
193 }
194 }
195}
196
197impl<P: SWCurveConfig> AffineRepr for Affine<P> {
198 type Config = P;
199 type BaseField = P::BaseField;
200 type ScalarField = P::ScalarField;
201 type Group = Projective<P>;
202
203 fn xy(&self) -> Option<(Self::BaseField, Self::BaseField)> {
204 (!self.infinity).then(|| (self.x, self.y))
205 }
206
207 #[inline]
208 fn generator() -> Self {
209 P::GENERATOR
210 }
211
212 fn zero() -> Self {
213 Self {
214 x: P::BaseField::ZERO,
215 y: P::BaseField::ZERO,
216 infinity: true,
217 }
218 }
219
220 fn from_random_bytes(bytes: &[u8]) -> Option<Self> {
221 P::BaseField::from_random_bytes_with_flags::<SWFlags>(bytes).and_then(|(x, flags)| {
222 if x.is_zero() && flags.is_infinity() {
225 Some(Self::identity())
226 } else if let Some(y_is_positive) = flags.is_positive() {
227 Self::get_point_from_x_unchecked(x, y_is_positive)
228 } else {
230 None
231 }
232 })
233 }
234
235 fn mul_bigint(&self, by: impl AsRef<[u64]>) -> Self::Group {
236 P::mul_affine(self, by.as_ref())
237 }
238
239 #[must_use]
242 fn mul_by_cofactor_to_group(&self) -> Self::Group {
243 P::mul_affine(self, Self::Config::COFACTOR)
244 }
245
246 fn clear_cofactor(&self) -> Self {
250 P::clear_cofactor(self)
251 }
252}
253
254impl<P: SWCurveConfig> Neg for Affine<P> {
255 type Output = Self;
256
257 #[inline]
260 fn neg(mut self) -> Self {
261 self.y.neg_in_place();
262 self
263 }
264}
265
266impl<P: SWCurveConfig, T: Borrow<Self>> Add<T> for Affine<P> {
267 type Output = Projective<P>;
268 fn add(self, other: T) -> Projective<P> {
269 let mut copy = self.into_group();
271 copy += other.borrow();
272 copy
273 }
274}
275
276impl<P: SWCurveConfig> Add<Projective<P>> for Affine<P> {
277 type Output = Projective<P>;
278 fn add(self, other: Projective<P>) -> Projective<P> {
279 other + self
280 }
281}
282
283impl<'a, P: SWCurveConfig> Add<&'a Projective<P>> for Affine<P> {
284 type Output = Projective<P>;
285 fn add(self, other: &'a Projective<P>) -> Projective<P> {
286 *other + self
287 }
288}
289
290impl<P: SWCurveConfig, T: Borrow<Self>> Sub<T> for Affine<P> {
291 type Output = Projective<P>;
292 fn sub(self, other: T) -> Projective<P> {
293 let mut copy = self.into_group();
294 copy -= other.borrow();
295 copy
296 }
297}
298
299impl<P: SWCurveConfig> Sub<Projective<P>> for Affine<P> {
300 type Output = Projective<P>;
301 fn sub(self, other: Projective<P>) -> Projective<P> {
302 self + (-other)
303 }
304}
305
306impl<'a, P: SWCurveConfig> Sub<&'a Projective<P>> for Affine<P> {
307 type Output = Projective<P>;
308 fn sub(self, other: &'a Projective<P>) -> Projective<P> {
309 self + (-*other)
310 }
311}
312
313impl<P: SWCurveConfig> Default for Affine<P> {
314 #[inline]
315 fn default() -> Self {
316 Self::identity()
317 }
318}
319
320impl<P: SWCurveConfig, T: Borrow<P::ScalarField>> Mul<T> for Affine<P> {
321 type Output = Projective<P>;
322
323 #[inline]
324 fn mul(self, other: T) -> Self::Output {
325 self.mul_bigint(other.borrow().into_bigint())
326 }
327}
328
329impl<P: SWCurveConfig> From<Projective<P>> for Affine<P> {
332 #[inline]
333 fn from(p: Projective<P>) -> Affine<P> {
334 if p.is_zero() {
335 Affine::identity()
336 } else if p.z.is_one() {
337 Affine::new_unchecked(p.x, p.y)
339 } else {
340 let zinv = p.z.inverse().unwrap();
342 let zinv_squared = zinv.square();
343
344 let x = p.x * &zinv_squared;
346
347 let y = p.y * &(zinv_squared * &zinv);
349
350 Affine::new_unchecked(x, y)
351 }
352 }
353}
354
355impl<P: SWCurveConfig> CanonicalSerialize for Affine<P> {
356 #[inline]
357 fn serialize_with_mode<W: Write>(
358 &self,
359 writer: W,
360 compress: ark_serialize::Compress,
361 ) -> Result<(), SerializationError> {
362 P::serialize_with_mode(self, writer, compress)
363 }
364
365 #[inline]
366 fn serialized_size(&self, compress: Compress) -> usize {
367 P::serialized_size(compress)
368 }
369}
370
371impl<P: SWCurveConfig> Valid for Affine<P> {
372 fn check(&self) -> Result<(), SerializationError> {
373 if self.is_on_curve() && self.is_in_correct_subgroup_assuming_on_curve() {
374 Ok(())
375 } else {
376 Err(SerializationError::InvalidData)
377 }
378 }
379}
380
381impl<P: SWCurveConfig> CanonicalDeserialize for Affine<P> {
382 fn deserialize_with_mode<R: Read>(
383 reader: R,
384 compress: Compress,
385 validate: Validate,
386 ) -> Result<Self, SerializationError> {
387 P::deserialize_with_mode(reader, compress, validate)
388 }
389}
390
391impl<M: SWCurveConfig, ConstraintF: Field> ToConstraintField<ConstraintF> for Affine<M>
392where
393 M::BaseField: ToConstraintField<ConstraintF>,
394{
395 #[inline]
396 fn to_field_elements(&self) -> Option<Vec<ConstraintF>> {
397 let mut x = self.x.to_field_elements()?;
398 let y = self.y.to_field_elements()?;
399 let infinity = self.infinity.to_field_elements()?;
400 x.extend_from_slice(&y);
401 x.extend_from_slice(&infinity);
402 Some(x)
403 }
404}