ark_ec/models/mnt6/
mod.rs1use crate::{
2 models::{short_weierstrass::SWCurveConfig, CurveConfig},
3 pairing::{MillerLoopOutput, Pairing, PairingOutput},
4};
5use ark_ff::{
6 fp3::{Fp3, Fp3Config},
7 fp6_2over3::{Fp6, Fp6Config},
8 AdditiveGroup, CyclotomicMultSubgroup, Field, PrimeField,
9};
10use educe::Educe;
11use itertools::Itertools;
12use num_traits::{One, Zero};
13
14use ark_std::{marker::PhantomData, vec::*};
15
16#[cfg(feature = "parallel")]
17use rayon::prelude::*;
18
19pub mod g1;
20pub mod g2;
21
22use self::g2::{AteAdditionCoefficients, AteDoubleCoefficients, G2ProjectiveExtended};
23pub use self::{
24 g1::{G1Affine, G1Prepared, G1Projective},
25 g2::{G2Affine, G2Prepared, G2Projective},
26};
27
28pub type GT<P> = Fp6<P>;
29
30pub trait MNT6Config: 'static + Sized {
31 const TWIST: Fp3<Self::Fp3Config>;
32 const TWIST_COEFF_A: Fp3<Self::Fp3Config>;
33 const ATE_LOOP_COUNT: &'static [i8];
34 const ATE_IS_LOOP_COUNT_NEG: bool;
35 const FINAL_EXPONENT_LAST_CHUNK_1: <Self::Fp as PrimeField>::BigInt;
36 const FINAL_EXPONENT_LAST_CHUNK_W0_IS_NEG: bool;
37 const FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0: <Self::Fp as PrimeField>::BigInt;
38 type Fp: PrimeField + Into<<Self::Fp as PrimeField>::BigInt>;
39 type Fr: PrimeField + Into<<Self::Fr as PrimeField>::BigInt>;
40 type Fp3Config: Fp3Config<Fp = Self::Fp>;
41 type Fp6Config: Fp6Config<Fp3Config = Self::Fp3Config>;
42 type G1Config: SWCurveConfig<BaseField = Self::Fp, ScalarField = Self::Fr>;
43 type G2Config: SWCurveConfig<
44 BaseField = Fp3<Self::Fp3Config>,
45 ScalarField = <Self::G1Config as CurveConfig>::ScalarField,
46 >;
47
48 fn multi_miller_loop(
49 a: impl IntoIterator<Item = impl Into<G1Prepared<Self>>>,
50 b: impl IntoIterator<Item = impl Into<G2Prepared<Self>>>,
51 ) -> MillerLoopOutput<MNT6<Self>> {
52 let pairs = a
53 .into_iter()
54 .zip_eq(b)
55 .map(|(a, b)| (a.into(), b.into()))
56 .collect::<Vec<_>>();
57 let result = ark_std::cfg_into_iter!(pairs)
58 .map(|(a, b)| MNT6::<Self>::ate_miller_loop(&a, &b))
59 .product();
60 MillerLoopOutput(result)
61 }
62
63 fn final_exponentiation(f: MillerLoopOutput<MNT6<Self>>) -> Option<PairingOutput<MNT6<Self>>> {
64 let value = f.0;
65 let value_inv = value.inverse()?;
66 let value_to_first_chunk =
67 MNT6::<Self>::final_exponentiation_first_chunk(&value, &value_inv);
68 let value_inv_to_first_chunk =
69 MNT6::<Self>::final_exponentiation_first_chunk(&value_inv, &value);
70 let result = MNT6::<Self>::final_exponentiation_last_chunk(
71 &value_to_first_chunk,
72 &value_inv_to_first_chunk,
73 );
74 Some(PairingOutput(result))
75 }
76}
77
78#[derive(Educe)]
79#[educe(Copy, Clone, PartialEq, Eq, Debug, Hash)]
80pub struct MNT6<P: MNT6Config>(PhantomData<fn() -> P>);
81
82impl<P: MNT6Config> MNT6<P> {
83 fn doubling_for_flipped_miller_loop(
84 r: &G2ProjectiveExtended<P>,
85 ) -> (G2ProjectiveExtended<P>, AteDoubleCoefficients<P>) {
86 let a = r.t.square();
87 let b = r.x.square();
88 let c = r.y.square();
89 let d = c.square();
90 let e = (r.x + &c).square() - &b - &d;
91 let f = (b + &b + &b) + &(P::TWIST_COEFF_A * &a);
92 let g = f.square();
93
94 let d_eight = d.double().double().double();
95
96 let e2 = e.double();
97 let x = g - &e2.double();
98 let y = -d_eight + &(f * &(e2 - &x));
99 let z = (r.y + &r.z).square() - &c - &r.z.square();
100 let t = z.square();
101
102 let r2 = G2ProjectiveExtended { x, y, z, t };
103 let coeff = AteDoubleCoefficients {
104 c_h: (r2.z + &r.t).square() - &r2.t - &a,
105 c_4c: c + &c + &c + &c,
106 c_j: (f + &r.t).square() - &g - &a,
107 c_l: (f + &r.x).square() - &g - &b,
108 };
109
110 (r2, coeff)
111 }
112
113 fn mixed_addition_for_flipper_miller_loop(
114 x: &Fp3<P::Fp3Config>,
115 y: &Fp3<P::Fp3Config>,
116 r: &G2ProjectiveExtended<P>,
117 ) -> (G2ProjectiveExtended<P>, AteAdditionCoefficients<P>) {
118 let a = y.square();
119 let b = r.t * x;
120 let d = ((r.z + y).square() - &a - &r.t) * &r.t;
121 let h = b - &r.x;
122 let i = h.square();
123 let e = i + &i + &i + &i;
124 let j = h * &e;
125 let v = r.x * &e;
126 let ry2 = r.y.double();
127 let l1 = d - &ry2;
128
129 let x = l1.square() - &j - &(v + &v);
130 let y = l1 * &(v - &x) - &(j * &ry2);
131 let z = (r.z + &h).square() - &r.t - &i;
132 let t = z.square();
133
134 let r2 = G2ProjectiveExtended { x, y, z, t };
135 let coeff = AteAdditionCoefficients { c_l1: l1, c_rz: z };
136
137 (r2, coeff)
138 }
139
140 pub fn ate_miller_loop(p: &G1Prepared<P>, q: &G2Prepared<P>) -> Fp6<P::Fp6Config> {
141 let l1_coeff = Fp3::new(p.x, P::Fp::zero(), P::Fp::zero()) - &q.x_over_twist;
142
143 let mut f = <Fp6<P::Fp6Config>>::one();
144
145 let mut add_idx: usize = 0;
146
147 let y_over_twist_neg = -q.y_over_twist;
150 assert_eq!(P::ATE_LOOP_COUNT.len() - 1, q.double_coefficients.len());
151 for (bit, dc) in P::ATE_LOOP_COUNT.iter().skip(1).zip(&q.double_coefficients) {
152 let g_rr_at_p = Fp6::new(
153 dc.c_l - &dc.c_4c - &(dc.c_j * &p.x_twist),
154 dc.c_h * &p.y_twist,
155 );
156
157 f = f.square() * &g_rr_at_p;
158
159 let g_rq_at_p = if *bit == 1 {
161 let ac = &q.addition_coefficients[add_idx];
162 add_idx += 1;
163
164 Fp6::new(
165 ac.c_rz * &p.y_twist,
166 -(q.y_over_twist * &ac.c_rz + &(l1_coeff * &ac.c_l1)),
167 )
168 } else if *bit == -1 {
169 let ac = &q.addition_coefficients[add_idx];
170 add_idx += 1;
171 Fp6::new(
172 ac.c_rz * &p.y_twist,
173 -(y_over_twist_neg * &ac.c_rz + &(l1_coeff * &ac.c_l1)),
174 )
175 } else if *bit == 0 {
176 continue;
177 } else {
178 unreachable!();
179 };
180 f *= &g_rq_at_p;
181 }
182
183 if P::ATE_IS_LOOP_COUNT_NEG {
184 let ac = &q.addition_coefficients[add_idx];
185
186 let g_rnegr_at_p = Fp6::new(
187 ac.c_rz * &p.y_twist,
188 -(q.y_over_twist * &ac.c_rz + &(l1_coeff * &ac.c_l1)),
189 );
190 f = (f * &g_rnegr_at_p).inverse().unwrap();
191 }
192
193 f
194 }
195
196 fn final_exponentiation_first_chunk(
197 elt: &Fp6<P::Fp6Config>,
198 elt_inv: &Fp6<P::Fp6Config>,
199 ) -> Fp6<P::Fp6Config> {
200 let mut elt_q3 = *elt;
204 elt_q3.cyclotomic_inverse_in_place();
205 let elt_q3_over_elt = elt_q3 * elt_inv;
207 let mut alpha = elt_q3_over_elt;
209 alpha.frobenius_map_in_place(1);
210 alpha * &elt_q3_over_elt
212 }
213
214 fn final_exponentiation_last_chunk(
215 elt: &Fp6<P::Fp6Config>,
216 elt_inv: &Fp6<P::Fp6Config>,
217 ) -> Fp6<P::Fp6Config> {
218 let elt_clone = *elt;
219 let elt_inv_clone = *elt_inv;
220
221 let mut elt_q = *elt;
222 elt_q.frobenius_map_in_place(1);
223
224 let w1_part = elt_q.cyclotomic_exp(P::FINAL_EXPONENT_LAST_CHUNK_1);
225 let w0_part = if P::FINAL_EXPONENT_LAST_CHUNK_W0_IS_NEG {
226 elt_inv_clone.cyclotomic_exp(P::FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0)
227 } else {
228 elt_clone.cyclotomic_exp(P::FINAL_EXPONENT_LAST_CHUNK_ABS_OF_W0)
229 };
230
231 w1_part * &w0_part
232 }
233}
234
235impl<P: MNT6Config> Pairing for MNT6<P> {
236 type BaseField = <P::G1Config as CurveConfig>::BaseField;
237 type ScalarField = <P::G1Config as CurveConfig>::ScalarField;
238 type G1 = G1Projective<P>;
239 type G1Affine = G1Affine<P>;
240 type G1Prepared = G1Prepared<P>;
241 type G2 = G2Projective<P>;
242 type G2Affine = G2Affine<P>;
243 type G2Prepared = G2Prepared<P>;
244 type TargetField = Fp6<P::Fp6Config>;
245
246 fn multi_miller_loop(
247 a: impl IntoIterator<Item = impl Into<Self::G1Prepared>>,
248 b: impl IntoIterator<Item = impl Into<Self::G2Prepared>>,
249 ) -> MillerLoopOutput<Self> {
250 P::multi_miller_loop(a, b)
251 }
252
253 fn final_exponentiation(f: MillerLoopOutput<Self>) -> Option<PairingOutput<Self>> {
254 P::final_exponentiation(f)
255 }
256}