1use ark_ff::{AdditiveGroup, BitIteratorBE, Field};
2use ark_serialize::{CanonicalDeserialize, CanonicalSerialize};
3use ark_std::vec::*;
4use educe::Educe;
5use num_traits::One;
6
7use crate::{
8 bw6::{BW6Config, TwistType},
9 models::short_weierstrass::SWCurveConfig,
10 short_weierstrass::{Affine, Projective},
11 AffineRepr, CurveGroup,
12};
13
14pub type G2Affine<P> = Affine<<P as BW6Config>::G2Config>;
15pub type G2Projective<P> = Projective<<P as BW6Config>::G2Config>;
16
17#[derive(Educe, CanonicalSerialize, CanonicalDeserialize)]
18#[educe(Clone, Debug, PartialEq, Eq)]
19pub struct G2Prepared<P: BW6Config> {
20 pub ell_coeffs_1: Vec<(P::Fp, P::Fp, P::Fp)>,
23 pub ell_coeffs_2: Vec<(P::Fp, P::Fp, P::Fp)>,
24 pub infinity: bool,
25}
26
27#[derive(Educe, CanonicalSerialize, CanonicalDeserialize)]
28#[educe(Clone, Copy, Debug)]
29pub struct G2HomProjective<P: BW6Config> {
30 x: P::Fp,
31 y: P::Fp,
32 z: P::Fp,
33}
34
35impl<P: BW6Config> Default for G2Prepared<P> {
36 fn default() -> Self {
37 Self::from(G2Affine::<P>::generator())
38 }
39}
40
41impl<P: BW6Config> From<G2HomProjective<P>> for G2Affine<P> {
43 fn from(q: G2HomProjective<P>) -> Self {
44 let z_inv = q.z.inverse().unwrap();
45 let x = q.x * &z_inv;
46 let y = q.y * &z_inv;
47 G2Affine::<P>::new_unchecked(x, y)
48 }
49}
50
51impl<P: BW6Config> From<G2Affine<P>> for G2Prepared<P> {
52 fn from(q: G2Affine<P>) -> Self {
53 if q.infinity {
54 return Self {
55 ell_coeffs_1: vec![],
56 ell_coeffs_2: vec![],
57 infinity: true,
58 };
59 }
60
61 let mut ell_coeffs_1 = vec![];
63 let mut r = G2HomProjective::<P> {
64 x: q.x,
65 y: q.y,
66 z: P::Fp::one(),
67 };
68
69 for i in BitIteratorBE::new(P::ATE_LOOP_COUNT_1).skip(1) {
70 ell_coeffs_1.push(r.double_in_place());
71
72 if i {
73 ell_coeffs_1.push(r.add_in_place(&q));
74 }
75 }
76 let r_affine: G2Affine<P> = r.into();
81 let (qu, neg_qu) = if P::ATE_LOOP_COUNT_1_IS_NEGATIVE {
83 (-r_affine, r_affine)
84 } else {
85 (r_affine, -r_affine)
86 };
87
88 r = G2HomProjective::<P> {
89 x: qu.x,
90 y: qu.y,
91 z: P::Fp::one(),
92 };
93 ell_coeffs_1.push(r.clone().add_in_place(&q));
94
95 let mut ell_coeffs_2 = vec![];
96
97 for bit in P::ATE_LOOP_COUNT_2.iter().rev().skip(1) {
99 ell_coeffs_2.push(r.double_in_place());
100
101 match bit {
102 1 => ell_coeffs_2.push(r.add_in_place(&qu)),
103 -1 => ell_coeffs_2.push(r.add_in_place(&neg_qu)),
104 _ => continue,
105 }
106 }
107
108 Self {
109 ell_coeffs_1,
110 ell_coeffs_2,
111 infinity: false,
112 }
113 }
114}
115
116impl<'a, P: BW6Config> From<&'a G2Affine<P>> for G2Prepared<P> {
117 fn from(q: &'a G2Affine<P>) -> Self {
118 (*q).into()
119 }
120}
121
122impl<'a, P: BW6Config> From<&'a G2Projective<P>> for G2Prepared<P> {
123 fn from(q: &'a G2Projective<P>) -> Self {
124 q.into_affine().into()
125 }
126}
127
128impl<P: BW6Config> From<G2Projective<P>> for G2Prepared<P> {
129 fn from(q: G2Projective<P>) -> Self {
130 q.into_affine().into()
131 }
132}
133
134impl<P: BW6Config> G2Prepared<P> {
135 pub fn is_zero(&self) -> bool {
136 self.infinity
137 }
138}
139
140impl<P: BW6Config> G2HomProjective<P> {
141 pub fn double_in_place(&mut self) -> (P::Fp, P::Fp, P::Fp) {
142 let a = self.x * &self.y;
147 let b = self.y.square();
148 let b4 = b.double().double();
149 let c = self.z.square();
150 let e = P::G2Config::COEFF_B * &(c.double() + &c);
151 let f = e.double() + &e;
152 let g = b + &f;
153 let h = (self.y + &self.z).square() - &(b + &c);
154 let i = e - &b;
155 let j = self.x.square();
156 let e2_square = e.double().square();
157
158 self.x = a.double() * &(b - &f);
159 self.y = g.square() - &(e2_square.double() + &e2_square);
160 self.z = b4 * &h;
161 match P::TWIST_TYPE {
162 TwistType::M => (i, j.double() + &j, -h),
163 TwistType::D => (-h, j.double() + &j, i),
164 }
165 }
166
167 pub fn add_in_place(&mut self, q: &G2Affine<P>) -> (P::Fp, P::Fp, P::Fp) {
168 let theta = self.y - &(q.y * &self.z);
171 let lambda = self.x - &(q.x * &self.z);
172 let c = theta.square();
173 let d = lambda.square();
174 let e = lambda * &d;
175 let f = self.z * &c;
176 let g = self.x * &d;
177 let h = e + &f - &g.double();
178 self.x = lambda * &h;
179 self.y = theta * &(g - &h) - &(e * &self.y);
180 self.z *= &e;
181 let j = theta * &q.x - &(lambda * &q.y);
182
183 match P::TWIST_TYPE {
184 TwistType::M => (j, -theta, lambda),
185 TwistType::D => (lambda, -theta, j),
186 }
187 }
188}