1use crate::{
2 models::{short_weierstrass::SWCurveConfig, CurveConfig},
3 pairing::{MillerLoopOutput, Pairing, PairingOutput},
4};
5use ark_ff::{
6 fields::{
7 fp12_2over3over2::{Fp12, Fp12Config},
8 fp2::Fp2Config,
9 fp6_3over2::Fp6Config,
10 Field, Fp2, PrimeField,
11 },
12 CyclotomicMultSubgroup,
13};
14use ark_std::{cfg_chunks_mut, marker::PhantomData, vec::*};
15use educe::Educe;
16use itertools::Itertools;
17use num_traits::One;
18
19#[cfg(feature = "parallel")]
20use rayon::prelude::*;
21
22pub enum TwistType {
23 M,
24 D,
25}
26
27pub trait BnConfig: 'static + Sized {
28 const X: &'static [u64];
31
32 const X_IS_NEGATIVE: bool;
34
35 const ATE_LOOP_COUNT: &'static [i8];
37
38 const TWIST_TYPE: TwistType;
39 const TWIST_MUL_BY_Q_X: Fp2<Self::Fp2Config>;
40 const TWIST_MUL_BY_Q_Y: Fp2<Self::Fp2Config>;
41 type Fp: PrimeField + Into<<Self::Fp as PrimeField>::BigInt>;
42 type Fp2Config: Fp2Config<Fp = Self::Fp>;
43 type Fp6Config: Fp6Config<Fp2Config = Self::Fp2Config>;
44 type Fp12Config: Fp12Config<Fp6Config = Self::Fp6Config>;
45 type G1Config: SWCurveConfig<BaseField = Self::Fp>;
46 type G2Config: SWCurveConfig<
47 BaseField = Fp2<Self::Fp2Config>,
48 ScalarField = <Self::G1Config as CurveConfig>::ScalarField,
49 >;
50
51 fn multi_miller_loop(
52 a: impl IntoIterator<Item = impl Into<G1Prepared<Self>>>,
53 b: impl IntoIterator<Item = impl Into<G2Prepared<Self>>>,
54 ) -> MillerLoopOutput<Bn<Self>> {
55 let mut pairs = a
56 .into_iter()
57 .zip_eq(b)
58 .filter_map(|(p, q)| {
59 let (p, q) = (p.into(), q.into());
60 match !p.is_zero() && !q.is_zero() {
61 true => Some((p, q.ell_coeffs.into_iter())),
62 false => None,
63 }
64 })
65 .collect::<Vec<_>>();
66
67 let mut f = cfg_chunks_mut!(pairs, 4)
68 .map(|pairs| {
69 let mut f = <Bn<Self> as Pairing>::TargetField::one();
70 for i in (1..Self::ATE_LOOP_COUNT.len()).rev() {
71 if i != Self::ATE_LOOP_COUNT.len() - 1 {
72 f.square_in_place();
73 }
74
75 for (p, coeffs) in pairs.iter_mut() {
76 Bn::<Self>::ell(&mut f, &coeffs.next().unwrap(), &p.0);
77 }
78
79 let bit = Self::ATE_LOOP_COUNT[i - 1];
80 if bit == 1 || bit == -1 {
81 for (p, coeffs) in pairs.iter_mut() {
82 Bn::<Self>::ell(&mut f, &coeffs.next().unwrap(), &p.0);
83 }
84 }
85 }
86 f
87 })
88 .product::<<Bn<Self> as Pairing>::TargetField>();
89
90 if Self::X_IS_NEGATIVE {
91 f.cyclotomic_inverse_in_place();
92 }
93
94 for (p, coeffs) in &mut pairs {
95 Bn::<Self>::ell(&mut f, &coeffs.next().unwrap(), &p.0);
96 }
97
98 for (p, coeffs) in &mut pairs {
99 Bn::<Self>::ell(&mut f, &coeffs.next().unwrap(), &p.0);
100 }
101
102 MillerLoopOutput(f)
103 }
104
105 #[allow(clippy::let_and_return)]
106 fn final_exponentiation(f: MillerLoopOutput<Bn<Self>>) -> Option<PairingOutput<Bn<Self>>> {
107 let f = f.0;
111
112 let mut f1 = f;
114 f1.cyclotomic_inverse_in_place();
115
116 f.inverse().map(|mut f2| {
117 let mut r = f1 * &f2;
120
121 f2 = r;
123 r.frobenius_map_in_place(2);
125
126 r *= &f2;
129
130 let y0 = Bn::<Self>::exp_by_neg_x(r);
142 let y1 = y0.cyclotomic_square();
143 let y2 = y1.cyclotomic_square();
144 let mut y3 = y2 * &y1;
145 let y4 = Bn::<Self>::exp_by_neg_x(y3);
146 let y5 = y4.cyclotomic_square();
147 let mut y6 = Bn::<Self>::exp_by_neg_x(y5);
148 y3.cyclotomic_inverse_in_place();
149 y6.cyclotomic_inverse_in_place();
150 let y7 = y6 * &y4;
151 let mut y8 = y7 * &y3;
152 let y9 = y8 * &y1;
153 let y10 = y8 * &y4;
154 let y11 = y10 * &r;
155 let mut y12 = y9;
156 y12.frobenius_map_in_place(1);
157 let y13 = y12 * &y11;
158 y8.frobenius_map_in_place(2);
159 let y14 = y8 * &y13;
160 r.cyclotomic_inverse_in_place();
161 let mut y15 = r * &y9;
162 y15.frobenius_map_in_place(3);
163 let y16 = y15 * &y14;
164
165 PairingOutput(y16)
166 })
167 }
168}
169
170pub mod g1;
171pub mod g2;
172
173pub use self::{
174 g1::{G1Affine, G1Prepared, G1Projective},
175 g2::{G2Affine, G2Prepared, G2Projective},
176};
177
178#[derive(Educe)]
179#[educe(Copy, Clone, PartialEq, Eq, Debug, Hash)]
180pub struct Bn<P: BnConfig>(PhantomData<fn() -> P>);
181
182impl<P: BnConfig> Bn<P> {
183 fn ell(f: &mut Fp12<P::Fp12Config>, coeffs: &g2::EllCoeff<P>, p: &G1Affine<P>) {
185 let mut c0 = coeffs.0;
186 let mut c1 = coeffs.1;
187 let mut c2 = coeffs.2;
188
189 match P::TWIST_TYPE {
190 TwistType::M => {
191 c2.mul_assign_by_fp(&p.y);
192 c1.mul_assign_by_fp(&p.x);
193 f.mul_by_014(&c0, &c1, &c2);
194 },
195 TwistType::D => {
196 c0.mul_assign_by_fp(&p.y);
197 c1.mul_assign_by_fp(&p.x);
198 f.mul_by_034(&c0, &c1, &c2);
199 },
200 }
201 }
202
203 fn exp_by_neg_x(mut f: Fp12<P::Fp12Config>) -> Fp12<P::Fp12Config> {
204 f = f.cyclotomic_exp(P::X);
205 if !P::X_IS_NEGATIVE {
206 f.cyclotomic_inverse_in_place();
207 }
208 f
209 }
210}
211
212impl<P: BnConfig> Pairing for Bn<P> {
213 type BaseField = <P::G1Config as CurveConfig>::BaseField;
214 type ScalarField = <P::G1Config as CurveConfig>::ScalarField;
215 type G1 = G1Projective<P>;
216 type G1Affine = G1Affine<P>;
217 type G1Prepared = G1Prepared<P>;
218 type G2 = G2Projective<P>;
219 type G2Affine = G2Affine<P>;
220 type G2Prepared = G2Prepared<P>;
221 type TargetField = Fp12<P::Fp12Config>;
222
223 fn multi_miller_loop(
224 a: impl IntoIterator<Item = impl Into<Self::G1Prepared>>,
225 b: impl IntoIterator<Item = impl Into<Self::G2Prepared>>,
226 ) -> MillerLoopOutput<Self> {
227 P::multi_miller_loop(a, b)
228 }
229
230 fn final_exponentiation(f: MillerLoopOutput<Self>) -> Option<PairingOutput<Self>> {
231 P::final_exponentiation(f)
232 }
233}