pub type G2Affine<P> = Affine<<P as Bls12Config>::G2Config>;
Aliased Type§
struct G2Affine<P> { /* private fields */ }
Implementations
Source§impl<P: SWCurveConfig> Affine<P>
impl<P: SWCurveConfig> Affine<P>
Sourcepub fn is_in_correct_subgroup_assuming_on_curve(&self) -> bool
pub fn is_in_correct_subgroup_assuming_on_curve(&self) -> bool
Checks if self
is in the subgroup having order that equaling that of
P::ScalarField
.
Source§impl<P: SWCurveConfig> Affine<P>
impl<P: SWCurveConfig> Affine<P>
Sourcepub fn new(x: P::BaseField, y: P::BaseField) -> Self
pub fn new(x: P::BaseField, y: P::BaseField) -> Self
Constructs a group element from x and y coordinates. Performs checks to ensure that the point is on the curve and is in the right subgroup.
Sourcepub const fn new_unchecked(x: P::BaseField, y: P::BaseField) -> Self
pub const fn new_unchecked(x: P::BaseField, y: P::BaseField) -> Self
Constructs a group element from x and y coordinates.
§Warning
Does not perform any checks to ensure the point is in the curve or is in the right subgroup.
pub const fn identity() -> Self
Sourcepub fn get_point_from_x_unchecked(
x: P::BaseField,
greatest: bool,
) -> Option<Self>
pub fn get_point_from_x_unchecked( x: P::BaseField, greatest: bool, ) -> Option<Self>
Attempts to construct an affine point given an x-coordinate. The point is not guaranteed to be in the prime order subgroup.
If and only if greatest
is set will the lexicographically
largest y-coordinate be selected.
Sourcepub fn get_ys_from_x_unchecked(
x: P::BaseField,
) -> Option<(P::BaseField, P::BaseField)>
pub fn get_ys_from_x_unchecked( x: P::BaseField, ) -> Option<(P::BaseField, P::BaseField)>
Returns the two possible y-coordinates corresponding to the given x-coordinate.
The corresponding points are not guaranteed to be in the prime-order subgroup,
but are guaranteed to be on the curve. That is, this method returns None
if the x-coordinate corresponds to a non-curve point.
The results are sorted by lexicographical order.
This means that, if P::BaseField: PrimeField
, the results are sorted as integers.
Sourcepub fn is_on_curve(&self) -> bool
pub fn is_on_curve(&self) -> bool
Checks if self
is a valid point on the curve.
pub fn to_flags(&self) -> SWFlags
Trait Implementations
Source§impl<'a, P: SWCurveConfig> Add<&'a Projective<P>> for Affine<P>
impl<'a, P: SWCurveConfig> Add<&'a Projective<P>> for Affine<P>
Source§type Output = Projective<P>
type Output = Projective<P>
+
operator.Source§fn add(self, other: &'a Projective<P>) -> Projective<P>
fn add(self, other: &'a Projective<P>) -> Projective<P>
+
operation. Read moreSource§impl<P: SWCurveConfig> Add<Projective<P>> for Affine<P>
impl<P: SWCurveConfig> Add<Projective<P>> for Affine<P>
Source§type Output = Projective<P>
type Output = Projective<P>
+
operator.Source§fn add(self, other: Projective<P>) -> Projective<P>
fn add(self, other: Projective<P>) -> Projective<P>
+
operation. Read moreSource§impl<P: SWCurveConfig, T: Borrow<Self>> Add<T> for Affine<P>
impl<P: SWCurveConfig, T: Borrow<Self>> Add<T> for Affine<P>
Source§type Output = Projective<P>
type Output = Projective<P>
+
operator.Source§fn add(self, other: T) -> Projective<P>
fn add(self, other: T) -> Projective<P>
+
operation. Read moreSource§impl<P: SWCurveConfig> AffineRepr for Affine<P>
impl<P: SWCurveConfig> AffineRepr for Affine<P>
Source§fn mul_by_cofactor_to_group(&self) -> Self::Group
fn mul_by_cofactor_to_group(&self) -> Self::Group
Multiplies this element by the cofactor and output the resulting projective element.
Source§fn clear_cofactor(&self) -> Self
fn clear_cofactor(&self) -> Self
Performs cofactor clearing. The default method is simply to multiply by the cofactor. Some curves can implement a more efficient algorithm.
type Config = P
Source§type BaseField = <P as CurveConfig>::BaseField
type BaseField = <P as CurveConfig>::BaseField
type ScalarField = <P as CurveConfig>::ScalarField
Source§type Group = Projective<P>
type Group = Projective<P>
Source§fn xy(&self) -> Option<(Self::BaseField, Self::BaseField)>
fn xy(&self) -> Option<(Self::BaseField, Self::BaseField)>
Source§fn from_random_bytes(bytes: &[u8]) -> Option<Self>
fn from_random_bytes(bytes: &[u8]) -> Option<Self>
Source§fn mul_bigint(&self, by: impl AsRef<[u64]>) -> Self::Group
fn mul_bigint(&self, by: impl AsRef<[u64]>) -> Self::Group
Source§fn into_group(self) -> Self::Group
fn into_group(self) -> Self::Group
Source§fn mul_by_cofactor(&self) -> Self
fn mul_by_cofactor(&self) -> Self
Source§fn mul_by_cofactor_inv(&self) -> Self
fn mul_by_cofactor_inv(&self) -> Self
Self::ScalarField
.Source§impl<P: SWCurveConfig> CanonicalDeserialize for Affine<P>
impl<P: SWCurveConfig> CanonicalDeserialize for Affine<P>
Source§fn deserialize_with_mode<R: Read>(
reader: R,
compress: Compress,
validate: Validate,
) -> Result<Self, SerializationError>
fn deserialize_with_mode<R: Read>( reader: R, compress: Compress, validate: Validate, ) -> Result<Self, SerializationError>
fn deserialize_compressed<R>(reader: R) -> Result<Self, SerializationError>where
R: Read,
fn deserialize_compressed_unchecked<R>(
reader: R,
) -> Result<Self, SerializationError>where
R: Read,
fn deserialize_uncompressed<R>(reader: R) -> Result<Self, SerializationError>where
R: Read,
fn deserialize_uncompressed_unchecked<R>(
reader: R,
) -> Result<Self, SerializationError>where
R: Read,
Source§impl<P: SWCurveConfig> CanonicalSerialize for Affine<P>
impl<P: SWCurveConfig> CanonicalSerialize for Affine<P>
Source§fn serialize_with_mode<W: Write>(
&self,
writer: W,
compress: Compress,
) -> Result<(), SerializationError>
fn serialize_with_mode<W: Write>( &self, writer: W, compress: Compress, ) -> Result<(), SerializationError>
fn serialized_size(&self, compress: Compress) -> usize
fn serialize_compressed<W>(&self, writer: W) -> Result<(), SerializationError>where
W: Write,
fn compressed_size(&self) -> usize
fn serialize_uncompressed<W>(&self, writer: W) -> Result<(), SerializationError>where
W: Write,
fn uncompressed_size(&self) -> usize
Source§impl<P: SWCurveConfig> Clone for Affine<P>
impl<P: SWCurveConfig> Clone for Affine<P>
Source§impl<P: SWCurveConfig> Debug for Affine<P>
impl<P: SWCurveConfig> Debug for Affine<P>
Source§impl<P: SWCurveConfig> Default for Affine<P>
impl<P: SWCurveConfig> Default for Affine<P>
Source§impl<P: SWCurveConfig> Display for Affine<P>
impl<P: SWCurveConfig> Display for Affine<P>
Source§impl<P: SWCurveConfig> From<Projective<P>> for Affine<P>
impl<P: SWCurveConfig> From<Projective<P>> for Affine<P>
Source§fn from(p: Projective<P>) -> Affine<P>
fn from(p: Projective<P>) -> Affine<P>
Source§impl<P: SWCurveConfig> Hash for Affine<P>
impl<P: SWCurveConfig> Hash for Affine<P>
Source§impl<P: SWCurveConfig, T: Borrow<P::ScalarField>> Mul<T> for Affine<P>
impl<P: SWCurveConfig, T: Borrow<P::ScalarField>> Mul<T> for Affine<P>
Source§impl<P: SWCurveConfig> Neg for Affine<P>
impl<P: SWCurveConfig> Neg for Affine<P>
Source§impl<P: SWCurveConfig> PartialEq<Projective<P>> for Affine<P>
impl<P: SWCurveConfig> PartialEq<Projective<P>> for Affine<P>
Source§impl<P: SWCurveConfig> PartialEq for Affine<P>
impl<P: SWCurveConfig> PartialEq for Affine<P>
Source§impl<'a, P: SWCurveConfig> Sub<&'a Projective<P>> for Affine<P>
impl<'a, P: SWCurveConfig> Sub<&'a Projective<P>> for Affine<P>
Source§type Output = Projective<P>
type Output = Projective<P>
-
operator.Source§fn sub(self, other: &'a Projective<P>) -> Projective<P>
fn sub(self, other: &'a Projective<P>) -> Projective<P>
-
operation. Read moreSource§impl<P: SWCurveConfig> Sub<Projective<P>> for Affine<P>
impl<P: SWCurveConfig> Sub<Projective<P>> for Affine<P>
Source§type Output = Projective<P>
type Output = Projective<P>
-
operator.Source§fn sub(self, other: Projective<P>) -> Projective<P>
fn sub(self, other: Projective<P>) -> Projective<P>
-
operation. Read moreSource§impl<P: SWCurveConfig, T: Borrow<Self>> Sub<T> for Affine<P>
impl<P: SWCurveConfig, T: Borrow<Self>> Sub<T> for Affine<P>
Source§type Output = Projective<P>
type Output = Projective<P>
-
operator.Source§fn sub(self, other: T) -> Projective<P>
fn sub(self, other: T) -> Projective<P>
-
operation. Read more